Background: The automatic generation of radiology reports, which seeks to create a free-text description from a clinical radiograph, is emerging as a pivotal intersection between clinical medicine and artificial intelligence. Leveraging natural language processing technologies can accelerate report creation, enhancing health care quality and standardization. However, most existing studies have not yet fully tapped into the combined potential of advanced language and vision models.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
December 2023
Effectively medication recommendation with complex multimorbidity conditions is a critical yet challenging task in healthcare. Most existing works predicted medications based on longitudinal records, which assumed the encoding format of intra-visit medical events are serialized and information transmitted patterns of learning longitudinal sequence data are stable. However, the following conditions may have been ignored: 1) A more compact encoder for intra-relationship in the intra-visit medical event is urgent; 2) Strategies for learning accurate representations of the variable longitudinal sequences of patients are different.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2023
As two important textual modalities in electronic health records (EHR), both structured data (clinical codes) and unstructured data (clinical narratives) have recently been increasingly applied to the healthcare domain. Most existing EHR-oriented studies, however, either focus on a particular modality or integrate data from different modalities in a straightforward manner, which usually treats structured and unstructured data as two independent sources of information about patient admission and ignore the intrinsic interactions between them. In fact, the two modalities are documented during the same encounter where structured data inform the documentation of unstructured data and vice versa.
View Article and Find Full Text PDF