Publications by authors named "Yongshi Zhong"

Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have potentially complementary characteristics that reflect the electrical and hemodynamic characteristics of neural responses, so EEG-fNIRS-based hybrid brain-computer interface (BCI) is the research hotspots in recent years. However, current studies lack a comprehensive systematic approach to properly fuse EEG and fNIRS data and exploit their complementary potential, which is critical for improving BCI performance. To address this issue, this study proposes a novel multimodal fusion framework based on multi-level progressive learning with multi-domain features.

View Article and Find Full Text PDF

Music can effectively improve people's emotions, and has now become an effective auxiliary treatment method in modern medicine. With the rapid development of neuroimaging, the relationship between music and brain function has attracted much attention. In this study, we proposed an integrated framework of multi-modal electroencephalogram (EEG) and functional near infrared spectroscopy (fNIRS) from data collection to data analysis to explore the effects of music (especially personal preferred music) on brain activity.

View Article and Find Full Text PDF

Domain adaptation (DA) tackles the problem where data from the source domain and target domain have different underlying distributions. In cross-domain (cross-subject or cross-dataset) emotion recognition based on EEG signals, traditional classification methods lack domain adaptation capabilities and have low performance. To address this problem, we proposed a novel domain adaptation strategy called adversarial discriminative-temporal convolutional networks (AD-TCNs) in this study, which can ensure the invariance of the representation of feature graphs in different domains and fill in the differences between different domains.

View Article and Find Full Text PDF