This study investigated the effect of light on emission of various volatile and semi-volatile organic compounds (VOCs and SVOCs), from polyvinyl chloride (PVC) products using xenon lamp as a solar light simulator. The emission flux generally decreased over time, with the light-induced targeted ∑VOC flux being about 1.6-times higher than heat-induced flux during the initial 1-h exposure.
View Article and Find Full Text PDFThe potential effect of hydrological conditions on distribution and loadings of Hg species was investigated in the microtidal Hyeongsan River Estuary (HRE). Dissolved Hg (DHg) and dissolved methylmercury (DMeHg) from the creek receiving industrial wastes were effectively settled to sediment during the post-typhoon period, while persistent input from the Hg-contaminated creek without settling was observed during the dry periods. The event-based mean approach was applied to explore the hydrological effects on the annual flux of Hg.
View Article and Find Full Text PDFBurning incenses and scented candles may provide harmful chemicals. Although many studies have evaluated volatile organic chemicals emitted by their use and related health risks, extension of our understanding for guiding appropriate use under various use conditions is necessary. In this study, emission characteristics of commercial incenses and scented candles were evaluated in a laboratory chamber using real-time measurement and the time-weighted average exposure concentrations of monoaromatic compounds and monoterpenes were assessed using passive samplers while volunteers living in a studio apartment use them.
View Article and Find Full Text PDFHighly organized π-aggregate architectures can strongly affect electronic couplings, leading to important photophysical behaviors. With the escalating interest in two-dimensional (2D) materials attributed to their exceptional electronic and optical characteristics, there is growing anticipation that 2D radial-π-stacks built upon radial π-conjugation nanorings, incorporating intra- and inter-ring electronic couplings within the confines of a 2D plane, will exhibit superior topological attributes and distinct properties. Despite their immense potential, the design and synthesis of 2D π-stacks have proven to be a formidable challenge due to the insufficient π-π interactions necessary for stable stacking.
View Article and Find Full Text PDFThis study investigated the leaching of phthalate and non-phthalate plasticizers from polyvinyl chloride microplastics (MPs) into sediment and their degradation over a 30-d period via abiotic and biotic processes. The results showed that 3579% of plasticizers were released into the sediment from the MPs and > 99.9% degradation was achieved.
View Article and Find Full Text PDFMultiexciton in singlet exciton fission represents a critical quantum state with significant implications for both solar cell applications and quantum information science. Two distinct fields of interest explore contrasting phenomena associated with the geminate triplet pair: one focusing on the persistence of long-lived correlation and the other emphasizing efficient decorrelation. Despite the pivotal nature of multiexciton processes, a comprehensive understanding of their dependence on the structural and spin properties of materials is currently lacking in experimental realizations.
View Article and Find Full Text PDFThis study aimed to optimize the methods for sampling and analyzing methylmercury (MeHg) concentrated within diffusive gradients in thin films (DGT) and its application to different water bodies. We explored the elution solution for MeHg, comprised of 1.13 mM thiourea and 0.
View Article and Find Full Text PDFThis study investigated the contents of total mercury (THg), trace metals, and CH and determined the signature microbes involved in various biogeochemical processes in the sediment of the Canadian Beaufort Sea. The THg ranged between 32 and 63 μg/kg and the trace metals such as Fe, Al, Mn, and Zn were significant in distributions. The pH, SO, Fe, and redox proxy metals were crucial factors in the spatial and vertical heterogeneity of geochemical distributions.
View Article and Find Full Text PDFStretchable bioelectronics has notably contributed to the advancement of continuous health monitoring and point-of-care type health care. However, microscale nonconformal contact and locally dehydrated interface limit performance, especially in dynamic environments. Therefore, hydrogels can be a promising interfacial material for the stretchable bioelectronics due to their unique advantages including tissue-like softness, water-rich property, and biocompatibility.
View Article and Find Full Text PDFThe potential human health risks associated with soil vapor intrusion and volatile organic compounds (VOCs) exposure were characterized at an industrialized site by the quantification of gaseous VOCs in soil pores using a passive sampling technique. The gaseous tetrachloroethene (PCE) in soil pores varied between 12 and 5,400 μg m showing 3 orders of magnitude variation with dependence on groundwater PCE concentrations. Though the PCE concentration in the air only varied between 0.
View Article and Find Full Text PDFSinglet exciton fission in organic chromophores has received much attention during the past decade. Inspired by numerous spectroscopic studies in the solid state, there have been vigorous efforts to study singlet exciton fission dynamics in covalently bonded oligomers, which aims to investigate underlying mechanisms of this intriguing process in simplified model systems. In terms of through-space orbital interactions, however, most of covalently bonded pentacene oligomers studied so far fall into weakly interacting systems since they manifest chain-like structures based on various (non)conjugated linkers.
View Article and Find Full Text PDFMetal contamination and other geochemical alterations affect microbial composition and functional activities, disturbing natural biogeochemical cycles. Therefore, it is essential to understand the influences of multi-metal and geochemical interactions on microbial communities. This work investigated the distributions of total mercury (THg), methylmercury (MeHg), and trace metals in the anthropogenically affected sediment.
View Article and Find Full Text PDFThe small nanoparticle size and long-chain ligands in colloidal metal halide perovskite quantum dots (PeQDs) cause charge confinement, which impedes exciton dissociation and carrier extraction in PeQD solar cells, so they have low short-circuit current density J , which impedes further increases in their power conversion efficiency (PCE). Here, a re-assembling process (RP) is developed for perovskite nanocrystalline (PeNC) films made of colloidal perovskite nanocrystals to increase J in PeNC solar cells. The RP of PeNC films increases their crystallite size and eliminates long-chain ligands, and thereby overcomes the charge confinement in PeNC films.
View Article and Find Full Text PDFAn equilibrium passive sampler made of polydimethylsiloxane (PDMS) fiber was developed to measure volatile organic compounds (VOCs) in soil vapor. Expanded polytetrafluoroethylene (ePTFE) was used to protect PDMS from pollution and direct contact with soil components. For all tested VOCs, equilibrium was reached after 7 days at 5 °C.
View Article and Find Full Text PDFIn the present study, the migration of plasticizers from modeled and commercial polyvinyl chloride (mPVC and cPVC, respectively) to poly(dimethylsiloxane) via artificial sebum was assessed to mimic the dermal migration of plasticizers. In addition, the various factors affecting migration of phthalic acid esters (PAEs) from diverse PVC products were investigated. The migrated mass and migration ratio of PAEs increased but the migration rate decreased over time.
View Article and Find Full Text PDFVolatile organic compounds (VOCs) have been globally reported at various sites. Currently, limited literature is available on VOC bioremediation using bacterial-immobilized biochar (BC-B). In this study, multiple VOC-degrading bacteria were enriched and isolated using a newly designed diffusion bioreactor.
View Article and Find Full Text PDFIn this study, total mercury (THg), methylmercury (MeHg), various trace elements, and microbial communities were measured in surface sediments of the East Siberian Sea (ESS). The results showed that the average values of THg and MeHg were 58.8 ± 15.
View Article and Find Full Text PDFS-impregnation of biochar through elemental S streaming is known to increase its sorption performance against Hg and methyl mercury (MeHg). However, the effects of %S-loading on biochar's mechanism and sorption capacities for MeHg, and its consequent impact when used as an amendment material for Hg-contaminated sediments, are poorly understood, and thus, were investigated in this work. Our results showed that a minimum sulfur loading of 1% was the most effective in reducing MeHg levels in sediments.
View Article and Find Full Text PDFPerylene bisimides (PBIs) have received great attention in their applicability to optoelectronics. Especially, symmetry-breaking charge separation (SB-CS) in PBIs has been investigated to mimic the efficient light capturing and charge generation in natural light-harvesting systems. However, unlike ultrafast CS dynamics in donor-acceptor heterojunction materials, ultrafast SB-CS in a stacked homodimer has still been challenging due to excimer formation in the absence of rigidifying surroundings such as a special pair in the natural systems.
View Article and Find Full Text PDFDye arrays from dimers up to larger oligomers constitute the functional units of natural light harvesting systems as well as organic photonic and photovoltaic materials. Whilst in the past decades many photophysical studies were devoted to molecular dimers for deriving structure-property relationship to unravel the design principles for ideal optoelectronic materials, they fail to accomplish the subsequent processes of charge carrier generation or the detachment of two triplet species in singlet fission (SF). Here, we present a slip-stacked perylene bisimide trimer, which constitutes a bridge between hitherto studied dimer and solid-state materials, to investigate SF mechanisms.
View Article and Find Full Text PDF