Publications by authors named "Yongsam Kim"

Pink-beam serial synchrotron crystallography (SSX) is beneficial in terms of X-ray flux and overcoming partial reflection compared with SSX using a monochromatic beam. The fixed-target (FT) scanning method can minimize the physical damage on the crystal sample when delivering the crystals to the X-ray interaction point. Additionally, general researchers can easily access the experiment since no specialized sample transfer technology is needed.

View Article and Find Full Text PDF

Serial synchrotron crystallography (SSX) helps to determine the room-temperature structure of macromolecules with minimal radiation damage. Pink-beam X-ray provides more photon flux than a monochromatic beam, which can increase the diffraction intensity of crystal samples and reduce the issue of partial reflection measurement compared with a monochromatic beam. The demonstration of pink-beam SSX at the 1C beamline at the Pohang Light Source II (PLS-II) was previously reported.

View Article and Find Full Text PDF

To swim through a viscous fluid, a flagellated bacterium must overcome the fluid drag on its body by rotating a flagellum or a bundle of multiple flagella. Because the drag increases with the size of bacteria, it is expected theoretically that the swimming speed of a bacterium inversely correlates with its body length. Nevertheless, despite extensive research, the fundamental size-speed relation of flagellated bacteria remains unclear with different experiments reporting conflicting results.

View Article and Find Full Text PDF

The CRISPR-Cas9 system is a widely used gene-editing tool, offering unprecedented opportunities for treating various diseases. Controlling Cas9/dCas9 activity at specific location and time to avoid undesirable effects is very important. Here, we report a conditionally active CRISPR-Cas9 system that regulates target gene expression upon sensing cellular environmental change.

View Article and Find Full Text PDF
Article Synopsis
  • The text indicates a correction to a previously published article, specifically identified by its DOI: 10.3389/fpls.2022.997888.
  • The correction may involve updates or clarifications that improve the accuracy of the original research findings.
  • DOI stands for Digital Object Identifier, which is a unique identifier used for academic papers to locate and reference them easily.
View Article and Find Full Text PDF
Article Synopsis
  • Potato cultivation faces threats from diseases, but genome editing technologies like CRISPR/Cas9 offer a solution for developing pathogen-resistant varieties.
  • Researchers established a CRISPR/Cas9 protocol to create potato mutants by targeting a susceptibility gene, achieving mutation efficiencies up to 34%.
  • While the resistant mutants showed enhanced salicylic acid levels and better disease resistance, they experienced significant growth inhibition, highlighting the need to balance disease resistance with healthy plant growth.
View Article and Find Full Text PDF

Transposon-associated transposase B (TnpB) is deemed an ancestral protein for type V, Cas12 family members, and the closest ancestor to UnCas12f1. Previously, we reported a set of engineered guide RNAs supporting high indel efficiency for Cas12f1 in human cells. Here we suggest a new technology whereby the engineered guide RNAs also manifest high-efficiency programmable endonuclease activity for TnpB.

View Article and Find Full Text PDF

Lophotrichous bacteria swim through fluid by rotating their flagellar bundle extended collectively from one pole of the cell body. Cells experience modes of motility such as push, pull, and wrapping, accompanied by pauses of motor rotation in between. We present a mathematical model of a lophotrichous bacterium and investigate the hydrodynamic interaction of cells to understand their swimming mechanism.

View Article and Find Full Text PDF

Sialic acid (SA) is present in glycoconjugates and important in cell-cell recognition, cell adhesion, and cell growth and as a receptor. Among the four mammalian sialidases, cytosolic NEU2 has a pivotal role in muscle and neuronal differentiation in vitro. However, its biological functions in vivo remain unclear due to its very low expression in humans.

View Article and Find Full Text PDF

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has severely influenced public health and economics. For the detection of SARS-CoV-2, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas)-based assays have been emerged because of their simplicity, sensitivity, specificity, and wide applicability. Herein, we have developed a CRISPR-Cas12-based assay for the detection of SARS-CoV-2.

View Article and Find Full Text PDF

Gene therapy would benefit from a miniature CRISPR system that fits into the small adeno-associated virus (AAV) genome and has high cleavage activity and specificity in eukaryotic cells. One of the most compact CRISPR-associated nucleases yet discovered is the archaeal Un1Cas12f1. However, Un1Cas12f1 and its variants have very low activity in eukaryotic cells.

View Article and Find Full Text PDF

Base editors and prime editors induce precise DNA modifications over one or several nucleotides in eukaryotic cells. The T7E1 assay has been widely adopted for the assessment of genome editing, but it has several limitations in the applications for prime editing and base editing due to low sensitivity, inaccuracy and additional disadvantages. Here, we propose a short inner primer-assisted, tetra primer-paired amplification (SIPATA) method as an alternative to T7E1 analysis.

View Article and Find Full Text PDF

The CRISPR-Cas12a system has been developed to harness highly specific genome editing in eukaryotic cells. Given the relatively small sizes of Cas12a genes, the system has been suggested to be most applicable to gene therapy using AAV vector delivery. Previously, we reported that a U-rich crRNA enabled highly efficient genome editing by the CRISPR-Cas12a system in eukaryotic cells.

View Article and Find Full Text PDF

Targeting aberrant glycoforms has been validated for in vitro cancer diagnostic development, and several assays are currently in routine clinical use. Because N-glycans in Fc region of antibodies show cross-reactivity with various lectins, high-quality aglycosylated antibodies are exceptionally important for immunoassay platform-based quantitative measurements. Previously, aglycosylated antibody acquisition relied on incomplete, uneconomical and onerous enzymatic and chemical methods.

View Article and Find Full Text PDF

Prime editors (PEs) enable targeted precise editing, including the generation of substitutions, insertions and deletions, in eukaryotic genomes. However, their genome-wide specificity has not been explored. Here, we developed Nickase-based Digenome-seq (nDigenome-seq), an in vitro assay that uses whole-genome sequencing to identify single-strand breaks induced by CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) nickase.

View Article and Find Full Text PDF

The α-galactosyl epitope is a terminal -glycan moiety of glycoproteins found in mammals except in humans, and thus, it is recognized as an antigen that provokes an immunogenic response in humans. Accordingly, it is necessary to analyze the α-galactosyl structure in biopharmaceuticals or organ transplants. Due to an identical glycan composition and molecular mass between α-galactosyl -glycans and hybrid/high-mannose-type -glycans, it is challenging to characterize α-galactosyl epitopes in -glycoproteins using mass spectrometry.

View Article and Find Full Text PDF

A von Hamos Bragg crystal spectrometer at 1C beamline of Pohang Accelerator Laboratory for x-ray emission spectroscopy (XES) is described. Diced Si crystals of different orientations ([111], [110], [100], and [311]) are glued onto a planoconcave glass substrate having 250/500 mm radius of curvature. To enhance the spectrometer efficiency, the length of the crystal analyzer is kept 200 mm.

View Article and Find Full Text PDF

The rotation of bacterial flagella driven by rotary motors enables the cell to swim through fluid. Bacteria run and reorient by changing the rotational direction of the motor for survival. Fluid environmental conditions also change the course of swimming; for example, cells near a solid boundary draw circular trajectories rather than straight runs.

View Article and Find Full Text PDF

Gangliosides act as a surface marker at the outer cellular membrane and play key roles in cancer cell invasion and metastasis. Despite the biological importance of gangliosides, they have been still poorly characterized due to the lack of effective analytical tools. Herein, we performed molecular profiling and structural elucidation of intact gangliosides in various cell lines including CFPAC1, A549, NCI-H358, MCF7, and Caski.

View Article and Find Full Text PDF

Genome editing took a dramatic turn with the development of the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) system. The CRISPR-Cas system is functionally divided into classes 1 and 2 according to the composition of the effector genes. Class 2 consists of a single effector nuclease, and routine practice of genome editing has been achieved by the development of the Class 2 CRISPR-Cas system, which includes the type II, V, and VI CRISPR-Cas systems.

View Article and Find Full Text PDF

Cpf1 is an RNA-guided endonuclease that can be programmed to cleave DNA targets. Specific features, such as containing a short crRNA, creating a staggered cleavage pattern and having a low off-target rate, render Cpf1 a promising gene-editing tool. Here, we present a new Cpf1 ortholog, EeCpf1, as a genome-editing tool; this ortholog is derived from the gut bacterial species Eubacterium eligens.

View Article and Find Full Text PDF

Despite the increased interest in epigenetic research, its progress has been hampered by a lack of satisfactory tools to control epigenetic factors in specific genomic regions. Until now, many attempts to manipulate DNA methylation have been made using drugs but these drugs are not target-specific and have global effects on the whole genome. However, due to new genome editing technologies, potential epigenetic factors can now possibly be regulated in a site-specific manner.

View Article and Find Full Text PDF

A wake monochromator based on a large-area diamond single crystal for hard X-ray self-seeding has been successfully installed and commissioned in the hard X-ray free-electron laser (FEL) at the Pohang Accelerator Laboratory with international collaboration. For this commissioning, the self-seeding was demonstrated with a low bunch charge (40 pC) and the nominal bunch charge (180 pC) of self-amplified spontaneous emission (SASE) operation. The FEL pulse lengths were estimated as 7 fs and 29.

View Article and Find Full Text PDF