Publications by authors named "Yongqin Lv"

Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer cells and tumor vasculature, making it an important biomarker. However, conventional PSMA-targeting agents like antibodies and small molecules have limitations. Antibodies exhibit instability and complex production, while small molecules show lower specificity and higher toxicity.

View Article and Find Full Text PDF

The inaugural National Competition for Carbon Dioxide Capture, Conversion and Utilization Innovation ("Bloomag Cup") was successfully held on July 30, 2023 in Beijing. This competition was initiated by Professor Tianwei Tan and Prof. Yongqin Lv from Beijing University of Chemical Technology (BUCT), and jointly organized by BUCT and Chongqing University.

View Article and Find Full Text PDF

Molecularly imprinted polymers (MIPs) show significant promise as effective alternatives to antibodies in disease diagnosis and therapy. However, the challenging process of screening extensive libraries of monomer combinations and synthesis conditions to identify formulations with enhanced selectivity and affinity presents a notable time constraint. The need for expedient methods becomes clear in accelerating the strategic development of MIPs tailored for precise molecular recognition purposes.

View Article and Find Full Text PDF

Molecular chaperones assist in protein refolding by selectively binding to proteins in their nonnative states. Despite progress in creating artificial chaperones, these designs often have a limited range of substrates they can work with. In this paper, we present molecularly imprinted flexible polymer nanoparticles (nanoMIPs) designed as customizable biomimetic chaperones.

View Article and Find Full Text PDF

A novel and versatile approach called "physical imprinting" is introduced to modulate enzyme conformation using mesoporous materials, addressing challenges in achieving improved enzyme activity and stability. Metal-organic frameworks with tailored mesopores, precisely matching enzyme size and shape, are synthesized. Remarkably, enzymes encapsulated within these customized mesopores exhibit over 1670% relative activity compared to free enzymes, maintaining outstanding efficiency even under harsh conditions such as heat, exposure to organic solvents, wide-ranging pH extremes from acidic to alkaline, and exposure to a digestion cocktail.

View Article and Find Full Text PDF
Article Synopsis
  • Enzymatic catalysis is an eco-friendly method for breaking down lignin, but challenges exist due to incompatibilities between enzymes and lignin itself.* -
  • Researchers developed a new supramolecular catalyst using fluorenyl-modified amino acids and copper that can work well in ionic liquids, allowing efficient lignin degradation.* -
  • This catalyst functions effectively at high temperatures (up to 75 °C) and shows better stability and activity compared to traditional copper-dependent oxidases, making it a promising option for sustainable lignin processing.*
View Article and Find Full Text PDF

An innovative methodology is presented for synthesizing synthetic polymer nanoparticles (TINPs) as potent tyrosinase inhibitors. This inhibition strategy combines the integration of two distinct functionalities, phenol, and phenylboronic acid, within the TINPs structure. The phenyl group mimics the natural monophenol substrate, forming a strong coordination with the catalytic copper ion, significantly inhibiting tyrosinase activity.

View Article and Find Full Text PDF

The major challenges that impede the preparation of abiotic synthetic receptors designed to feature selective bacterial recognition properties are the complexity, nonrobustness, and environmental adaptability of live microbes. Here, we describe a new rapid screening strategy to determine the optimal polymer formulation on 96-well plates and then produce abiotic synthetic receptors by imprinting the surface marker lipopolysaccharide (LPS) of Gram-negative bacteria. The resulting LPS-imprinted nanoparticles reveal remarkable affinity toward LPS with an equilibrium dissociation constant () value of 10 M and can distinguish and selectively recognize specific bacteria in whole blood at concentrations down to 10 cells/mL.

View Article and Find Full Text PDF

Stable redox-active conjugated molecules with exceptional electron-donating abilities are key components for the design and synthesis of ultralow band gap conjugated polymers. While hallmark electron-rich examples such as pentacene derivatives have been thoroughly explored, their poor air stability has hampered their broad incorporation into conjugated polymers for practical applications. Herein, we describe the synthesis of the electron-rich, fused pentacyclic pyrazino[2,3-:5,6-']diindolizine (PDIz) motif and detail its optical and redox behavior.

View Article and Find Full Text PDF

A new recognition method is explored for the rapid detection of B-type natriuretic peptide (BNP) based on the rational design and solid-phase synthesis of molecularly imprinted nanoparticles (nanoMIP) encapsulated with carbon dots. The nanosized magnetic template is first prepared by attaching the epitope of BNP on amino-functionalized magnetic carriers. High-dilution polymerization of monomers in the presence of magnetic template generates lightly crosslinked imprinted nanoparticles.

View Article and Find Full Text PDF

Covalent triazine frameworks (CTFs) and their derivative N-doped carbons have attracted much attention for application in energy conversion and storage. However, previous studies have mainly focused on developing new building blocks and optimizing synthetic conditions. The use of isometric building blocks to control the porous structure and to fundamentally understand structure-property relationships have rarely been reported.

View Article and Find Full Text PDF

Because of their ability to selectively bind to a target protein, copolymer nanoparticles (NPs) containing a selected combination of hydrophobic and charged groups have been frequently reported as potent antibody-like analogues. However, due to the intrinsic disorder of the copolymer NP in terms of its random monomer sequence and the cross-linked copolymer matrix, the copolymer NP is indeed strikingly different from a well-folded protein antibody and the complexation between the copolymer NP and a target protein is likely not due to a lock-key type of interaction but possibly due to a novel and unexplored molecular mechanism. Here, we study a key biomarker protein, vimentin, interacting with a set of random copolymer chains using implicit-water explicit-ion coarse-grained (CG) molecular dynamics (MD) simulations along with biolayer interferometry (BLI) analysis.

View Article and Find Full Text PDF

Mixed-matrix membranes (MMMs) comprising polymer matrices and metal-organic frameworks (MOFs) provide efficient and economic CO separation. One major challenge is to construct continuous and defect-free MMMs due to poor MOF/polymer compatibility. Here, this protocol describes the step-by-step details for synthesis of desired linkers that allow the fabrication of new polymerizable MOFs containing vinyl groups (BUCT MOFs) and the preparation procedures of defect-free MMMs with enhanced MOF/polymer interfacial adhesion and boosted gas separation performances.

View Article and Find Full Text PDF

Biomarkers are significant indicators to assist the early diagnosis of diseases and assess the therapeutic response. However, due to the low abundance of biomarkers in complex biological fluids, it is highly desirable to explore efficient techniques to attain their selective recognition and capture before the detection. Molecularly imprinted monoliths integrate the high selectivity of imprinted polymers and the rapid convective mass transport of monoliths, and as a result, are promising candidates to achieve the specific enrichment of biomarkers from complex samples.

View Article and Find Full Text PDF

Two frontier crystalline porous framework materials, namely, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely explored owing to their outstanding physicochemical properties. While each type of framework has its own intrinsic advantages and shortcomings for specific applications, combining the complementary properties of the two materials allows the engineering of new classes of hybrid porous crystalline materials with properties superior to the individual components. Since the first report of MOF/COF hybrid in 2016, it has rapidly evolved as a novel platform for diverse applications.

View Article and Find Full Text PDF

Engineering of enzyme microenvironment can surprisingly boost the apparent activity. However, the underlying regulation mechanism is not well-studied at a molecular level so far. Here, we present a modulation of two model enzymes of cytochrome (Cty C) and -amino acid oxidase (DAAO) with opposite pH-activity profiles using ionic polymers.

View Article and Find Full Text PDF

As the most representative family of proteinases related to tumorigenesis, matrix metalloproteinase-9 (MMP-9) represents a key player in cancer cell migration and regulation of the tumor microenvironment. The inhibition of MMP-9 activity has been pursued as a target for anticancer therapy. However, most synthetic MMP-9 inhibitors have failed in clinical trials because of their lack of selectivity.

View Article and Find Full Text PDF

The preparation of flawless and defect-free mixed matrix membranes (MMMs) comprising metal-organic framework (MOF) and polymer is often difficult owing to the poor MOF/polymer interface compatibility. Herein, we present the synthesis of an important family of pillared-layered MOFs with polymerizable moieties based on the parent structure [ZnLP] [L = vinyl containing benzenedicarboxylic acid linkers; P = 4,4'-bipyridine (bipy)]. The crystalline structures of polymerizable MOFs were analyzed using single-crystal X-ray crystallography.

View Article and Find Full Text PDF

Molecularly imprinted polymers, developed 50 years ago, have garnered enormous attention as receptor-like materials. Lately, molecularly imprinted polymers have been employed as a specific target tool in favor of cancer diagnosis and therapy by the selective recognition of tumor cells. Although the molecular imprinting technology has been well-innovated recently, the cell still remains the most challenging target for imprinting.

View Article and Find Full Text PDF

Molecularly imprinted polymers (MIPs) emerged half a century ago have now attracted tremendous attention as artificial receptors or plastic antibodies. Although the preparation of MIPs targeting small molecules, peptides, or even proteins is straightforward and well-developed, the molecular imprinting of microorganisms still remains a big challenge. This review highlights the preparation of MIPs that reveal biomimetic specificity and selectivity towards microorganisms by creating the well-defined cell recognition sites.

View Article and Find Full Text PDF

The main challenges in multienzymatic cascade reactions for CO reduction are the low CO solubility in water, the adjustment of substrate channeling, and the regeneration of co-factor. In this study, metal-organic frameworks (MOFs) were prepared as adsorbents for the storage of CO and at the same time as solid supports for the sequential co-immobilization of multienzymes via a layer-by-layer self-assembly approach. Amine-functionalized MIL-101(Cr) was synthesized for the adsorption of CO.

View Article and Find Full Text PDF

Encapsulation of enzymes in metal-organic frameworks (MOFs) is often obstructed by the small size of the orifices typical of most reported MOFs, which prevent the passage of larger-size enzymes. Here, the preparation of hierarchical micro- and mesoporous Zn-based MOFs via the templated emulsification method using hydrogels as a template is presented. Zinc-based hydrogels featuring a 3D interconnecting network are first produced via the formation of hydrogen bonds between melamine and salicylic acid in which zinc ions are well distributed.

View Article and Find Full Text PDF

Traditional films cannot fully adapt to industrial applications and to intensified processes. Advanced mixed-matrix membranes comprising metal-organic frameworks (MOF) embedded in a polymer matrix have been developed with the goal of breaking the trade-off effect of traditional polymer membranes and achieving separation performance beyond Robeson's upper limit. The key challenges in the fabrication of MOF-based mixed-matrix membranes are an enhancement in compatibility between the inorganic filler and the polymer matrix, elimination of the irregular morphology and non-selective interfacial defects, and further improvement in the gas-separation performance.

View Article and Find Full Text PDF