Background: Non-coding RNA is a key epigenetic regulation factor during skeletal muscle development and postnatal growth, and miR-542-3p was reported to be conserved and highly expressed in the skeletal muscle among different species. However, its exact functions in the proliferation of muscle stem cells and myogenesis remain to be determined.
Methods: Transfection of proliferative and differentiated C2C12 cells used miR-542-3p mimic and inhibitor.
Skeletal muscle consists of different muscle fiber types whose heterogeneity is characterized by different metabolic patterns and expression of MyHC isomers. The transformation of muscle fiber types is regulated by a complex molecular network in which long noncoding (lnc) RNAs play an important role. In this study, we found that lnc-H19 is more enriched in slow muscle fibers.
View Article and Find Full Text PDFLong non-coding metastasis-associated lung adenocarcinoma transcript (lnc-Malat1) emerges as a novel regulator in skeletal muscle development, while its function and the related mechanism is not fully revealed yet. In this study, knockdown of lnc-Malat1 by siRNA significantly inhibited the expression of myoblast marker genes (MyHC, MyoD, and MyoG) and slow muscle fiber marker genes (MyHC I), together with repressed expression of mitochondria-related genes COX5A, ACADM, CPTA1, FABP3, and NDUFA1. Overexpression of lnc-Malat1 exerted an opposite effect, promoting myoblast differentiation and slow muscle fiber formation.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
March 2023
The proliferation and differentiation of myoblasts are considered the key biological processes in muscle development and muscle-related diseases, in which the miRNAs involved remain incompletely understood. Previous research reported that miR-424(322)-5p is highly expressed in mouse skeletal muscle. Therefore, C2C12 cells are used as a model to clarify the effect of miR-424(322)-5p on the proliferation and differentiation of myoblasts.
View Article and Find Full Text PDFTo explore the expression pattern of the TRIB1 gene in yak follicles and its effect on the steroidogenesis of granulosa cells (GCs). Here, 4-5 years old female yaks were treated as the subjects. Immunohistochemically assay found that TRIB1 protein was expressed in different developmental follicles.
View Article and Find Full Text PDFFront Physiol
October 2021
Intramuscular fat (IMF) deposition is one of the most important factors to affect meat quality in livestock and induce insulin resistance and adverse metabolic phenotypes for humans. However, the key regulators involved in this process remain largely unknown. Although liver kinase B1 (LKB1) was reported to participate in the development of skeletal muscles and classical adipose tissues.
View Article and Find Full Text PDFEpigenetic signals and chromatin-modifying proteins play critical roles in adipogenesis, which determines the risk of obesity and which has recently attracted increasing interest. Histone demethylase 2A (KDM2A) is an important component of histone demethylase; however, its direct effect on fat deposition remains unclear. Here, a KDM2A loss of function was performed using two unbiased methods, small interfering RNA (siRNA) and Cre-Loxp recombinase systems, to reveal its function in adipogenesis.
View Article and Find Full Text PDF