CO capture and separation from natural and fuel gas are important industrial issues that refer to the control of CO emissions and the purification of target gases. Here, a novel non-planar g-CN monolayer that could be synthesized the supramolecular self-assembly strategy was identified using DFT calculations. The cohesive energy, phonon spectrum, BOMD, and mechanical stability criteria confirm the stability of the g-CN monolayer.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
In recent years, there has been significant interest in transition-metal sulfides (TMSs) due to their economic affordability and excellent catalytic activity. Nevertheless, it is difficult for TMSs to achieve satisfactory performance due to problems such as low conductivity, limited catalytic activity, and inadequate stability. Therefore, a catalyst with a heterostructure constituted of a nickel-iron-layered double hydroxide, nickel sulfide, molybdenum disulfide, and cerium dioxide was designed.
View Article and Find Full Text PDFThe rational design and preparation of a heterogeneous electrocatalyst for hydrogen evolution reaction (HER) has become a research hotspot, while applicable and pH-universal tungsten disulfide (WS)-based hybrid composites are rarely reported. Herein, we propose a novel hybrid catalyst (WS/CoS/CoS) comprising two heterojunctions of WS/CoS and WS/CoS, which grow on the porous skeleton of Co, N-codoped carbon (Co/NC) flexibly applicable to all-pH electrolytes. The effect of double heterogeneous coupling on HER activity is explored as the highly flexible heterojunction is conducive to tune the activity of the catalyst, and the synergistic interaction of the double heterojunctions is maximized by adjusting the proportion of heterojunction components.
View Article and Find Full Text PDFHeteroatom-doped carbon is widely used in the fields of adsorbents, electrode materials and catalysts due to its excellent physicochemical properties. N and S co-doped porous carbon spheres (N,S-PCSs) were synthesized using glucose and L-cysteine as carbon and heteroatom sources using a combined hydrothermal and KOH activation process. The physicochemical structures and single-factor methylene blue (MB) adsorption properties of the N,S-PCSs were then studied.
View Article and Find Full Text PDFSilicon (Si) attracts extensive attention as the advanced anode material for lithium (Li)-ion batteries (LIBs) because of its ultrahigh Li storage capacity and suitable voltage plateau. Hollow porous structure and dopant-induced lattice expansion can enhance the cycling stability and transporting kinetics of Li ions. However, it is still difficult to synthesize the Si anode possessing these structures simultaneously by a facile method.
View Article and Find Full Text PDFAssisted by artificial amorphous copper silicate, Si with a flake-like structure was obtained through a facile magnesiothermic reduction. The Si anodes exhibit excellent cyclic performance and rate performance. Particularly, a high initial coulombic efficiency of 85%-89% was obtained due to their greatly reduced surface and internal defects.
View Article and Find Full Text PDFTo address the huge volumetric change and unstable solid electrolyte interphase (SEI) issues of Sn-based anodes, this paper proposes a Sn-Co-C ternary composite with a cubic yolk-shell structure. The proposed Sn-Co nanoalloys encapsulated in N-doped carbon hollow cubes (Sn-Co@C) are simply synthesized by the conformal polydopamine coating of home-made CoSn(OH) hollow nanocubes subsequent with hydrogen reduction. The cubic Sn-Co@C yolk-shell structure possessing an optimized carbon shell thickness displays excellent cyclic performance and superior rate capability when utilized as an anode for lithium-ion batteries.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2017
A facile process is developed to prepare SnO-based composites through using metal-organic frameworks (MOFs) as precursors. The nitrogen-doped graphene wrapped okra-like SnO composites (SnO@N-RGO) are successfully synthesized for the first time by using Sn-based metal-organic frameworks (Sn-MOF) as precursors. When utilized as an anode material for lithium-ion batteries, the SnO@N-RGO composites possess a remarkably superior reversible capacity of 1041 mA h g at a constant current of 200 mA g after 180 charge-discharge processes and excellent rate capability.
View Article and Find Full Text PDFThis work explores facile synthesis of heterogeneous Si/MoSi2 nanocomposites via a one-step magnesiothermic reduction. MoSi2 serves as a highly electrically conductive nanoparticle that has several advantages of electrochemical properties, which is formed through the absorption of local heat accumulation generated by magnesiothermic reduction. As a result, the Si/MoSi2 nanocomposites exhibit excellent electrochemical performance, showing initial charge capacity of 1933.
View Article and Find Full Text PDF