The development of stable and efficient hole-transporting materials (HTMs) is critical for the commercialization of perovskite solar cells (PSCs). Herein, a novel spiro-type HTM was designed and synthesized where N-ethylcarbazole-terminated groups fully substituted the methoxy group of spiro-OMeTAD, named spiro-carbazole. The developed molecule exhibited a lower highest occupied molecular orbital level, higher hole mobility, and extremely high glass transition temperature (T =196 °C) compared with spiro-OMeTAD.
View Article and Find Full Text PDFThe complexity and multivariate analysis of biological systems and environment are the drawbacks of the current high-throughput sensing method and multianalyte identification. Deep learning (DL) algorithms contribute a big advantage in analyzing the nonlinear and multidimensional data. However, most DL models are data-driven black boxes suffering from nontransparent inner workings.
View Article and Find Full Text PDF