Heparan sulfate 6-endosulfatases (SULFs) remove 6-O-sulfo groups from heparan sulfate polysaccharide chains. SULFs modify the functions of heparan sulfate and contribute to the development of cancers, organ development and endothelial inflammatory responses. However, direct measurement of the activity of SULFs from human and mouse plasma is not currently possible.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Background: , a winter annual grass weed native to Eastern Europe and Western Asia, has become a widespread invasive species in the wheat-growing regions of China due to its high environmental adaptability. This study aims to explore the molecular mechanisms underlying the stress resistance of Tausch's goatgrass, focusing on the gene family.
Methods: A genome-wide analysis was conducted to identify and characterize the gene family in .
Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.
View Article and Find Full Text PDFPeople with type 1 diabetes (T1D) have a significantly elevated risk of stroke, but the mechanism through which T1D worsens ischemic stroke remains unclear. This study was aimed at investigating the roles of T1D-associated changes in the gut microbiota in aggravating ischemic stroke and the underlying mechanism. Fecal 16SrRNA sequencing indicated that T1D mice and mice with transplantation of T1D mouse gut microbiota had lower relative abundance of butyric acid producers, f_Erysipelotrichaceae and g_Allobaculum, and lower content of butyric acid in feces.
View Article and Find Full Text PDFHeparan sulfate (HS) regulation of FGFR function, which is essential for salivary gland (SG) development, is determined by the immense structural diversity of sulfated HS domains. 3-O-sulfotransferases generate highly 3-O-sulfated HS domains (3-O-HS), and Hs3st3a1 and Hs3st3b1 are enriched in myoepithelial cells (MECs) that produce basement membrane (BM) and are a growth factor signaling hub. Hs3st3a1;Hs3st3b1 double-knockout (DKO) mice generated to investigate 3-O-HS regulation of MEC function and growth factor signaling show loss of specific highly 3-O-HS and increased FGF/FGFR complex binding to HS.
View Article and Find Full Text PDFProteoglycans (PGs), consisting of glycosaminoglycans (GAGs) linked with the core protein through a tetrasaccharide linkage region, play roles in many important biological events. The chemical synthesis of PG glycopeptides is extremely challenging. In this work, the enzymes required for synthesis of chondroitin sulfate (CS) PG (CSPG) have been expressed and the suitable sequence of enzymatic reactions has been established.
View Article and Find Full Text PDFBackground: Severe burns may alter the stability of the intestinal flora and affect the patient's recovery process. Understanding the characteristics of the gut microbiota in the acute phase of burns and their association with phenotype can help to accurately assess the progression of the disease and identify potential microbiota markers.
Methods: We established mouse models of partial thickness deep III degree burns and collected faecal samples for 16 S rRNA amplification and high throughput sequencing at two time points in the acute phase for independent bioinformatic analysis.
Cathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in resorption of bone matrix. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS regulates the biological functions of CtsK, remains largely unknown.
View Article and Find Full Text PDFTRAIL (TNF-related apoptosis-inducing ligand) is a potent inducer of tumor cell apoptosis through TRAIL receptors. While it has been previously pursued as a potential anti-tumor therapy, the enthusiasm subsided due to unsuccessful clinical trials and the fact that many tumors are resistant to TRAIL. In this report, we identified heparan sulfate (HS) as an important regulator of TRAIL-induced apoptosis.
View Article and Find Full Text PDFCathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in bone remodeling. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS ultimately regulates the biological functions of CtsK, remains largely unknown.
View Article and Find Full Text PDFPreeclampsia (PE) is a significant threat to all pregnancies that is highly associated with maternal mortality and developmental disorders in infants. However, the etiopathogenesis of this condition remains unclear. This study aims to explore the regulatory roles of long noncoding RNAs (lncRNAs) and the mediated competing endogenous RNAs (ceRNA) in the etiopathogenesis of PE through analysis of lncRNA expression patterns in PE and healthy pregnant women (HPW), as well as the construction of lncRNA-mediated ceRNA regulatory networks using bioinformatics.
View Article and Find Full Text PDFBackground: Treatment options for advanced colon cancer are mainly combinations of chemotherapy and targeted drugs. However, poor physical health and medication intolerance limit the choice of anticancer drugs. Colon cancer with cirrhosis is a particular patient group that poses a challenge to clinical treatment.
View Article and Find Full Text PDFTRAIL (TNF-related apoptosis-inducing ligand) is a potent inducer of tumor cell apoptosis through TRAIL receptors. While it has been previously pursued as a potential anti-tumor therapy, the enthusiasm subsided due to unsuccessful clinical trials and the fact that many tumors are resistant to TRAIL. In this report we identified heparan sulfate (HS) as an important regulator of TRAIL-induced apoptosis.
View Article and Find Full Text PDFFibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures.
View Article and Find Full Text PDFPeriodontitis is a chronic inflammatory disease associated with persistent oral microbial dysbiosis. The human β-glucuronidase (GUS) degrades constituents of the periodontium and is used as a biomarker for periodontitis severity. However, the human microbiome also encodes GUS enzymes, and the role of these factors in periodontal disease is poorly understood.
View Article and Find Full Text PDFIntroduction: Dysregulated inflammation and coagulation are underlying mechanisms driving organ injury after trauma and hemorrhagic shock. Heparan sulfates, cell surface glycosaminoglycans abundantly expressed on the endothelial surface, regulate a variety of cellular processes. Endothelial heparan sulfate containing a rare 3--sulfate modification on a glucosamine residue is anticoagulant and anti-inflammatory through high-affinity antithrombin binding and sequestering of circulating damage-associated molecular pattern molecules.
View Article and Find Full Text PDFApolipoprotein E (ApoE)'s ϵ4 alle is the most important genetic risk factor for late onset Alzheimer's Disease (AD). Cell-surface heparan sulfate (HS) is a cofactor for ApoE/LRP1 interaction and the prion-like spread of tau pathology between cells. 3-O-sulfo (3-O-S) modification of HS has been linked to AD through its interaction with tau, and enhanced levels of 3-O-sulfated HS and 3-O-sulfotransferases in the AD brain.
View Article and Find Full Text PDFHeparanase, an endo-β-d-glucuronidase produced by a variety of cells and tissues, cleaves the glycosidic linkage between glucuronic acid (GlcA) and a 3-O- or 6-O-sulfated glucosamine, typified by the disaccharide -[GlcA-GlcNS3S6S]-, which is found within the antithrombin-binding domain of heparan sulfate or heparin. As such, all current forms of heparin are susceptible to degradation by heparanase with neutralization of anticoagulant properties. Here, we have designed a heparanase-resistant, ultralow molecular weight heparin as the structural analogue of fondaparinux that does not contain an internal GlcA residue but otherwise displays potent anticoagulant activity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
Sepsis is a lethal syndrome manifested by an unregulated, overwhelming inflammation from the host in response to infection. Here, we exploit the use of a synthetic heparan sulfate octadecasaccharide (18-mer) to protect against sepsis. The 18-mer not only inhibits the pro-inflammatory activity of extracellular histone H3 and high mobility group box 1 (HMGB1), but also elicits the anti-inflammatory effect from apolipoprotein A-I (ApoA-I).
View Article and Find Full Text PDFComplex carbohydrates (glycans) are major players in all organisms due to their structural, energy, and communication roles. This last essential role involves interacting and/or signaling through a plethora of glycan-binding proteins. The design and synthesis of glycans as potential drug candidates that selectively alter or perturb metabolic processes is challenging.
View Article and Find Full Text PDFHeparan sulfate (HS) is a sulfated polysaccharide with a wide range of biological activities. There is an increasing interest in the development of structurally homogeneous HS oligosaccharides as therapeutics. However, the factors influencing the pharmacokinetic properties of HS-based therapeutics remain unknown.
View Article and Find Full Text PDF