-GlcNAcylation is a reversible serine/threonine glycosylation on cytosolic and nuclear proteins that are involved in various regulatory pathways. However, the detection and quantification of -GlcNAcylation substrates have been challenging. Here, we report a highly efficient method for the identification of -GlcNAc modification via tandem glycan labeling, in which -GlcNAc is first galactosylated and then sialylated with a fluorophore-conjugated sialic acid residue, therefore enabling highly sensitive fluorescent detection.
View Article and Find Full Text PDFCells are covered with glycans. The expression and distribution of specific glycans on the surface of a cell are important for various cellular functions. Imaging these glycans is essential to aid elucidation of their biological roles.
View Article and Find Full Text PDFO-GlcNAcylation is a reversible serine/threonine glycosylation for regulating protein activity and availability inside cells. In a given protein, O-GlcNAcylated and unoccupied O-linked β-N-acetylglucosamine (O-GlcNAc) sites are referred to as closed and open sites, respectively. The balance between open and closed sites is believed to be dynamically regulated.
View Article and Find Full Text PDFHeparan sulfate (HS) is a polysaccharide fundamentally important for biologically activities. T/Tn antigens are universal carbohydrate cancer markers. Here, we report the specific imaging of these carbohydrates using a mesenchymal stem cell line and human umbilical vein endothelial cells (HUVEC).
View Article and Find Full Text PDFO-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation, the covalent attachment of N-acetylglucosamine to serine and threonine residues of proteins, is a post-translational modification that shares many features with protein phosphorylation. O-GlcNAc is essential for cell survival and plays important role in many biological processes (e.g.
View Article and Find Full Text PDFPurpose: The docetaxel-based chemotherapy is the standard of care for castration-resistant prostate cancer (CRPC), inevitably, patients develop resistance and decease. Until now, the mechanism and predictive marker for chemoresistance are poorly understood.
Experimental Design: Immortalized normal prostate and cancer cell lines stably manipulated with different DAB2IP expression levels were used and treated with chemotherapeutic drugs commonly used in prostate cancer therapy.
Non-small cell lung cancer (NSCLC) accounts for the majority of lung cancer caused human death. In this work, we selected oncogene mouse double minute 2 (MDM2) as a therapeutic target for NSCLC treatment and proposed that sufficient MDM2 knockdown could inhibit tumor growth via induction of cell cycle arrest and cancer cell apoptosis. On this regard, a new pH-responsive diblock copolymer of poly(methacryloyloxy ethyl phosphorylcholine)-block-poly(diisopropanolamine ethyl methacrylate) (PMPC-b-PDPA)/siRNA-MDM2 complex nanoparticle with minimized surface charge and suitable particle size was designed and developed for siRNA-MDM2 delivery in vitro and in vivo.
View Article and Find Full Text PDFThe endosomal barrier is a major bottleneck for the effective intracellular delivery of siRNA by nonviral nanocarriers. Here, we report a novel amphotericin B (AmB)-loaded, dual pH-responsive micelleplex platform for siRNA delivery. Micelles were self-assembled from poly(2-(dimethylamino)ethyl methacrylate)-block-poly(2-(diisopropylamino)ethyl methacrylate) (PDMA-b-PDPA) diblock copolymers.
View Article and Find Full Text PDFAn improved version of quantitative protein array platform utilizing linear Quantum dot signaling for systematically measuring protein levels and phosphorylation states is presented. The signals are amplified linearly by a confocal laser Quantum dot scanner resulting in ~1000-fold more sensitivity than traditional Western blots, but are not linear by the enzyme-based amplification. Software is developed to facilitate the quantitative readouts of signaling network activities.
View Article and Find Full Text PDFFibrosis is a pathological process characterized by infiltration and proliferation of mesenchymal cells in interstitial space. A substantial portion of these cells is derived from residing non-epithelial and/or epithelial cells that have acquired the ability to migrate and proliferate. The mesenchymal transition is also observed in cancer cells to confer the ability to metastasize.
View Article and Find Full Text PDFPurpose: Secretory clusterin (sCLU)/apolipoprotein J is an extracellular chaperone that has been functionally implicated in DNA repair, cell cycle regulation, apoptotic cell death, and tumorigenesis. It exerts a prosurvival function against most therapeutic treatments for cancer and is currently an antisense target in clinical trials for tumor therapy. However, the molecular mechanisms underlying its function remained largely unknown.
View Article and Find Full Text PDFNucleophosmin/B23 is a multifunctional phosphoprotein that is overexpressed in cancer cells and has been shown to be involved in both positive and negative regulation of transcription. In this study, we first identified GCN5 acetyltransferase as a B23-interacting protein by mass spectrometry, which was then confirmed by in vivo co-immunoprecipitation. An in vitro assay demonstrated that B23 bound the PCAF-N domain of GCN5 and inhibited GCN5-mediated acetylation of both free and mononucleosomal histones, probably through interfering with GCN5 and masking histones from being acetylated.
View Article and Find Full Text PDFThe phosphorylation of cyclin D1 at threonine 286 by glycogen synthase kinase 3beta (GSK3beta) has been shown to be required for the ubiquitination and nuclear export of cyclin D1 and its subsequent degradation in the proteasome. The mutation of the nearby residue, threonine 288, to nonphosphorylatable alanine has also been shown to reduce the ubiquitination of cyclin D1, suggesting that phosphorylation at threonine 288 may also lead to degradation of cyclin D1. We now demonstrate that the G(0)/G(1)-active arginine-directed protein kinase Mirk/dyrk1B binds to cyclin D1 and phosphorylates cyclin D1 at threonine 288 in vivo and that the cyclin D1-T288A construct is more stable than wild-type cyclin D1.
View Article and Find Full Text PDFMinibrain-related kinase (Mirk)/Dyrk1B is an arginine-directed serine/threonine kinase that is active in skeletal muscle development but is also expressed in various carcinomas. In the current study, the Met adaptor protein Ran-binding protein M (RanBPM) was identified as a Mirk-binding protein by yeast two-hybrid analysis. The Mirk-RanBPM association was confirmed by glutathione S-transferase pull-down assays, co-immunoprecipitation studies, and in vivo cross-linking.
View Article and Find Full Text PDFThe ultrafast excitation relaxation in the sodium borohydride-treated reaction center of Rhodobacter sphaeroides 601 was investigated with selective excitation. From the femtosecond pump-probe measurement at 790 nm, the excitation relaxation demonstrates a biexponential decay with time constants of about 200 fs and 1.4 ps.
View Article and Find Full Text PDFMirk/Dyrk1B protein kinase was shown in an earlier study to function as a transcriptional activator of HNF1alpha, which Mirk phosphorylates at Ser(249) within its CREB (cAMP-response element-binding protein)-binding protein (CBP) binding domain (). The MAPK kinase MKK3 was also shown to activate Mirk as a protein kinase, implicating Mirk in the biological response to certain stress agents. Another MKK3 substrate, p38MAPK, is now shown to inhibit the function of Mirk as a transcriptional activator in a kinase-independent manner.
View Article and Find Full Text PDFThe photosynthetic reaction center (RC) composite film was fabricated by self-assembled monolayers (SAMs) on the Au electrode with two different bifunctional reagents, 4-aminothiophenol (ATP) and 2-mercaptoethylamine (MEA), respectively. The square wave voltametry (SWV), bulk electrolysis and photocurrent test were employed for characterizing the composite film. The dramatic different electrochemical characteristics were observed for the two types of films, which strongly suggested an orientational difference for RC arising from the structural difference between the two bifunctional reagents.
View Article and Find Full Text PDFSheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)
January 2001
The ultrafast energy transfer process, which takes place in femtosecond time range, in bacterial photosynthetic reaction center RS601 was investigated using femtosecond pump-probe technique with selective excitation. Upon 755 nmexcitation, the excited state of bacteriopheophytin H decayed to bacteriochlorophyll B with a time constant of about 130 fs, while the excited state of B transported the energy to its energy acceptor, the dimeric bacteriochlorophyll P, in about 240 fs with the 800 nm excitation. The internal conversion process between the upper and lower exciton levels of special pair P might exist upon the excitation of 850 nm pulses.
View Article and Find Full Text PDF