In recent years, slippery liquid infused porous surfaces (SLIPS) renowned for their exceptional liquid repellency and anti-fouling properties, have garnered considerable attention. However, the instability of both structural integrity and the oil film severely restricts their practical applications. This study is inspired by superwetting biological surfaces, such as fish scales, seashells, and Nepenthes, to design and fabricate a multiplex biomimetic and robust lubricant-infused textured surface (LITMS) using laser-coating composite processing technology.
View Article and Find Full Text PDFIn recent years, nanotechnology and materials science have evolved and matured, making it increasingly easier to design and fabricate next-generation 3D microelectronics. The process has changed drastically from traditional 2D microelectronics, resulting in improved performance, higher integration density, and new functionalities. As applications become more complex and power-intensive, this technology can address the demands of high-performance computing, advanced sensors, and cutting-edge communication systems wearable, flexible devices, To manufacture higher-density microelectronics, recent advances in the fabrication of such 3D devices are discussed.
View Article and Find Full Text PDFTourmaline is known for its natural negative ion effect and far-infrared radiation function, which promote human blood circulation, relieve pain, regulate the endocrine system, and enhance immunity and other functions. These functions motivate the use of this material for enhanced sensitivity of wearable sensors. In this work, taking advantage of the unique multifunctions of tourmaline nanoparticles (Tur), highly boosted piezoelectricity was achieved by incorporating polydopamine (PDA)-modified Tur in PVDF.
View Article and Find Full Text PDFCurrent methods for the protection of metal surfaces utilize harsh chemical processes, such as organic paint or electro-plating, which are not environment-friendly and require extensive waste treatments. In this study, a two-step approach consisting of electrochemical assisted deposition (EAD) of an aqueous silane solution and a dip coating of a low surface energy silane for obtaining a superhydrophobic self-cleaning surface for the enhanced protection of copper substrate is presented. A porous and hierarchical micro-nanostructured silica basecoat (sol-gel) was first formed by EAD of a methyltriethoxysilane (MTES) precursor solution on a copper substrate.
View Article and Find Full Text PDFSilicon photonics is rapidly evolving as an advanced chip framework for implementing quantum technologies. With the help of silicon photonics, general-purpose programmable networks with hundreds of discrete components have been developed. These networks can compute quantum states generated on-chip as well as more extraordinary functions like quantum transmission and random number generation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
It is proven that introduction of graphene into typical heterostructures can effectively reduce the high interfacial thermal resistance in semiconductor chips. The crystallinity of graphene varies greatly; thus, we have investigated the effects of single-crystal and polycrystalline graphene on the thermal transport of AlN/graphene/3C-SiC heterostructures by molecular dynamics. The results show that polycrystalline graphene contributes more to the interfacial thermal conductance (ITC) inside the chip with a maximum increase of 75.
View Article and Find Full Text PDFDust pollution presents a wide range of adverse effects to product functionalities and the quality of human life. For instance, when dust particles deposit on solar photovoltaic panels, sunlight absorption is significantly reduced, and solar-to-electrical energy conversion yield may be lowered by 51%- Conventional (manual) dust removal methods are costly, consume significant material resources, and cause irreparable damage to the solar glass surface. Therefore, it is critical to develop glass surfaces that can clean themselves or are easily cleaned by natural forces.
View Article and Find Full Text PDFIn this paper, we preliminarily propose the dissipative sliding mode control (SMC) scheme for polyhedral singular semi-Markov jump linear parameter varying (SS-MJLPV) systems considering deception attacks between the sensor and controller. The main feature of this scheme is that a novel developed parameter dependent integral-type SMC law follows the changes of the system. Note that the mode of the sliding mode controller is not synchronized with the system mode, and the transition rates (TRs) of the system are assumed to be unknown.
View Article and Find Full Text PDFBacterial biofilms formed on touchable surfaces such as displays of electronic devices not only reduce the product service life, but also cause human health issues. There is an urgent need to research the biofilm formation mechanism and methodologies to prevent formation of biofilms on human touchable surfaces. It has been reported that laser-induced graphene (LIG) helps resist biofilm growth, which has been attributed to the atomic composition and sharp edges of graphene.
View Article and Find Full Text PDFMitochondrial DNA B Resour
April 2022
In this study, we sequenced and analyzed the complete mitochondrial genome of to compare mitochondrial genome structures and reconstruct phylogenetic relationships. The complete mitochondrial genome sequence of is circular, 15,343 bp in size and encodes 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and a control region (CR). Nucleotide composition is highly biased toward A + T nucleotides (81.
View Article and Find Full Text PDFBased on nonequilibrium molecular dynamics (NEMD) and nonequilibrium Green's function simulations, the interfacial thermal conductance (ITC) of graphene/h-BN in-plane heterostructures with near-interface defects (monovacancy defects, 585 and f5f7 double-vacancy defects) is studied. Compared to pristine graphene/h-BN, all near-interface defects reduce the ITC of graphene/h-BN. However, differences in defective structures and the wrinkles induced by the defects cause significant discrepancies in heat transfer for defective graphene/h-BN.
View Article and Find Full Text PDFWalnut peptides have been reported to exhibit diverse activities. In this study, we investigated the protective and recovery effects of the walnut derived peptide leucine-proline-phenylalanine (LPF) on dextran sulfate sodium (DSS)-induced colitis in mice. The peptide LPF mitigated the severity of symptoms during the development phase of colitis, as evidenced by changes in body weight, disease activity index score, and serum inflammatory cytokine levels.
View Article and Find Full Text PDFA new concise and facile method was explored to synthesize a collection of new 3-arylidene azetidin-2-ones, which could be regarded as the derivatives of the hybrid scaffold of bioactive natural cinnamamide and heterocycle azetidi-2-one. The structures of the synthesized compounds were characterized by H, C NMR, and MS; and their antifungal activity were evaluated against Alternaria solani Sorauer. These antifungal data were subjected to a quantitative structure-activity relationship (QSAR) analysis using Codessa software on the basis of the results from B3LYP/6-31G(d,p) quantum calculations.
View Article and Find Full Text PDFIn our continued efforts to improve the potential utility of the α-methylene-γ-lactone scaffold, 62 new and 59 known natural α-methylenelactam analogues including α-methylene-γ-lactams, α-arylidene-γ and δ-lactams, and 3-arylideneindolin-2-ones were synthesized as the bioisosteric analogues of the α-methylenelactone scaffold. The results of antifungal and cytotoxic activity indicated that among these derivatives compound (E)-1-(2, 6-dichlorobenzyl)-3-(2-fluorobenzylidene) pyrrolidin-2-one (Py51) possessed good selectivity with the highest antifungal activity against Colletotrichum orbiculare with IC = 10.4 μM but less cytotoxic activity with IC = 141.
View Article and Find Full Text PDFThirty-six new α-benzylidene-γ-lactone compounds based α-methylene-γ-butyrolactone substructure were prepared and characterized by spectroscopic analysis. All compounds were evaluated for antifungal activities in vitro against six plant pathogenic fungi and the half maximal inhibitory concentration (IC) against Botrytis cinerea and Colletotrichum lagenarium were investigated. Compounds 5c-3 and 5c-5 with the halogen atom exhibited excellent fungicidal activity against B.
View Article and Find Full Text PDFIn consideration of the fact that the α-methylene-γ-butyrolactone moiety is a major bio-functional group in the structure of carabrone and possesses some agricultural biological activity, forty-six new ester and six new ether derivatives containing α-methylene-γ-butyrolactone moieties were synthesized, and their fungicidal activities against Colletotrichum lagenarium and Botrytis cinerea were investigated. Most of the synthesized compounds showed moderate to significant fungicidal activity. Among them, halogen atom-containing derivatives showed better activity than others, especially compounds 6a,d which exhibited excellent fungicidal activity against C.
View Article and Find Full Text PDFThirty new and thirty-four known analogues were designed and synthesized to improve the potential use of the α-methylene-γ-butyrolactone ring, a natural pharmacophore. All structures were confirmed by (1)H and (13)C NMR, MS, and single-crystal X-ray diffraction analyses. The results of antifungal and cytotoxic activity indicated that the synthesized analogues showed significant inhibitory activity and limited selectivity.
View Article and Find Full Text PDF