The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish.
View Article and Find Full Text PDFThe mechanism of fish gonadal sex differentiation is complex and regulated by multiple factors. It has been widely known that proper steroidogenesis in Leydig cells and sex-related genes in Sertoli cells play important roles in gonadal sex differentiation. In teleosts, the precise interaction of these signals during the sexual fate determination remains elusive, especially their effect on the bi-potential gonad during the critical stage of sexual fate determination.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2023
Introduction: 1α,25-dihydroxyvitamin D3 (1α,25[OH]VD) is a hormone known for its key roles in calcium absorption and nutrient metabolism. In teleost fishes, 1α,25(OH)VD insufficiency causes impaired glucose metabolism and lipid oxidation. However, the cascade and mechanisms of 1α,25(OH)VD and the vitamin d receptor (VDR) signaling are unclear.
View Article and Find Full Text PDFIn recent studies, luteinizing hormone (LH) was reported to play important roles in oocyte maturation. However, the mechanism by which LH signaling, especially regarding the steroidogenesis process, affects oocyte maturation has not been clarified. In this study, zebrafish models with a functional deficiency in luteinizing hormone beta (Lhb) or steroidogenic acute regulatory protein (Star), an enzyme that promotes the transport of cholesterol into the inner mitochondrial membrane for maturation-induced hormone (MIH) production, were generated using transcription activator-like effector nucleases (TALENs).
View Article and Find Full Text PDF