Publications by authors named "Yongliang Tong"

Aberrant sialylated glycosylation in the tumor microenvironment is a novel immune suppression pathway, which has garnered significant attention as a targetable glycoimmune checkpoint for cancer immunotherapy to address the dilemma of existing therapies. However, rational drug design and in-depth mechanistic studies are urgently required for tumor sialic acid to become valuable glycoimmune targets. In this study, we explored the positive correlation of PD-L1 and sialyltransferase expression in clinical colorectal cancer tissues and identified their mutual regulation effects in macrophages.

View Article and Find Full Text PDF

Inhibin beta A (INHBA) and its homodimer activin A have pleiotropic effects on modulation of immune responses and tumor progression, but it remains uncertain whether tumors may release activin A to regulate anti-tumor immunity. In this study we investigated the effects and mechanisms of tumor intrinsic INHBA on carcinogenesis, tumor immunity and PD-L1 blockade. Bioinformatic analysis on the TCGA database revealed that INHBA expression levels were elevated in 33 cancer types, including breast cancer (BRCA) and colon adenocarcinoma (COAD).

View Article and Find Full Text PDF

The biological function of terminal galactose on glycoprotein is an open field of research. Although progress had being made on enzymes that can remove the terminal galactose on glycoproteins, there is a lack of report on galactosidases that can work directly on living cells. In this study, a unique beta 1,4 galactosidase was isolated from Elizabethkingia meningoseptica (Em).

View Article and Find Full Text PDF

N-glycanase 1 (NGLY1) is an essential enzyme involved in the deglycosylation of misfolded glycoproteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, which could hydrolyze N-glycan from N-glycoprotein or N-glycopeptide in the cytosol. Recent studies indicated that NGLY1 inhibition is a potential novel drug target for antiviral therapy. In this study, structure-based virtual analysis was applied to screen candidate NGLY1 inhibitors from 2960 natural compounds.

View Article and Find Full Text PDF

Purpose: (EM) is a multi-drug-resistant bacterium of global concern for its role in nosocomial infection and is generally resistant to aminoglycoside antibiotics. In the whole genome of an EM strain (FMS-007), an aminoglycoside-6-adenyl transferase gene () was predicted. This study aimed to characterize the biochemical function of ANT(6) and analyze the relationship between genotype and phenotype of in clinical EM isolates, so as to provide evidence for clinical precision drug use.

View Article and Find Full Text PDF

Core α-1,3 mannose is structurally near the core xylose and core fucose on core pentasaccharide from plant and insect glycoproteins. Mannosidase is a useful tool for characterization the role of core α-1,3 mannose in the composition of glycan related epitope, especially for those epitopes in which core xylose and core fucose are involved. Through functional genomic analysis, we identified a glycoprotein α-1,3 mannosidase and named it MA3.

View Article and Find Full Text PDF

PD-1/PD-L1 checkpoint blockade has demonstrated great success in cancer immunotherapy. Small-molecule PD-L1 inhibitors also attract significant research interests but remain challenging in the efficacy and safety. Carbohydrate moiety and carbohydrate-binding proteins (lectins) play important roles in immune modulation including antigen recognition and presenting.

View Article and Find Full Text PDF

CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6) is known to be a regulator of membranal programmed death ligand 1 (PD-L1) stability and a factor associated with malignancy progression, but the effects and mechanisms of CMTM6 on tumor growth, as well as its potential as a target for therapy, are still largely unknown. Here, we show that CMTM6 expression increased with tumor progression in both patients and mice. Ablation of CMTM6 significantly reduced human and murine tumor growth in a manner dependent on T-cell immunity.

View Article and Find Full Text PDF

Background: Various tumors are insensitive to immune checkpoint blockade (ICB) therapy. Toll-like receptors (TLRs) establish the link between innate and adaptive immunity, which can assist T-cell activation and serve as promising targets for combination to enhance ICB therapy. Here, we aimed to improve efficacy for anti-programmed death ligand 1 (PD-L1) therapy by developing a PD-L1/TLR7 dual-targeting nanobody-drug conjugate (NDC), based on the PD-L1 nanobodies and TLR7 agonist we developed.

View Article and Find Full Text PDF

Immunogenicity has been a major concern in the safety evaluation of therapeutic proteins. The assessment of the unwanted immunogenicity of the therapeutic proteins performed in animals prior to clinical trials has been a regulatory requirement. In preclinical studies of therapeutic proteins, cynomolgus monkeys are usually the most relevant animal species.

View Article and Find Full Text PDF

Activin A, a critical member of the transforming growth factor-β (TGF-β) superfamily, is a pluripotent factor involved in allergies, autoimmune diseases, cancers and other diseases with immune disorder. Similar to its family member, TGF-β, activin A also transmits signals through SMAD2/SMAD3, however, they bind to distinct receptors. Recent studies have uncovered that activin A plays a pivotal role in both innate and adaptive immune systems.

View Article and Find Full Text PDF

With programmed death 1/ligand 1 (PD-1/PD-L1) as the cornerstone, anti-PD antibodies have pioneered revolutionary immunotherapies for malignancies. But most patients struggled to respond to anti-PD owing to primary or acquired resistance or even hyperprogression, pointing to more efforts needed to explore this axis. PD-1 constrains T-cell immunoreactivity engaging with PD-L1 of tumor/myeloid cells is the canonical PD-1/PD-L1 axis function mode.

View Article and Find Full Text PDF

There is growing evidence that angiotensin-converting enzyme 2 is highly expressed on endothelial cells, endothelial dysfunction plays a critical role in coronavirus disease 2019 (COVID-19) progression, but laboratory evidence is still lacking. This study established a multicenter retrospective cohort of 966 COVID-19 patients from three hospitals in Wuhan, China. We found that male (62.

View Article and Find Full Text PDF

Malate dehydrogenase (MDH) plays important metabolic roles in bacteria. In this study, the recombinant MDH protein (His-MDH) of Brucella abortus was purified and its ability to catalyze the conversion of oxaloacetate (OAA) to L-malate (hereon referred to as MDH activity) was analyzed. Michaelis Constant (Km) and Maximum Reaction Velocity (Vmax) of the reaction were determined to be 6.

View Article and Find Full Text PDF

Brucella abortus is a gram-negative, facultative intracellular pathogen that causes brucellosis, a chronic zoonotic disease resulting in abortion in pregnant cattle and undulant fever in humans. Malate dehydrogenase (MDH), a key enzyme in the tricarboxylic acid cycle, plays important metabolic roles in aerobic energy producing pathways and in malate shuttle. In this study, the MDH-encoding gene for malate dehydrogenase mdh of B.

View Article and Find Full Text PDF

Brucellosis caused by Brucella species is a zoonotic disease with a serious impact on public health and the livestock industry. To better understand the pathogenesis of the disease, in vivo-induced antigen technology (IVIAT) was used to investigate the in vivo-induced antigens of Brucella abortus in this study. A genomic expression library of B.

View Article and Find Full Text PDF