Publications by authors named "Yongliang Shang"

The successful progression of meiosis prophase I requires integrating information from the structural and molecular levels. In this study, we show that ZFP541 and KCTD19 work in the same genetic pathway to regulate the progression of male meiosis and thus fertility. The Zfp541 and/or Kctd19 knockout male mice show various structural and recombination defects including detached chromosome ends, aberrant localization of chromosome axis components and recombination proteins, and globally altered histone modifications.

View Article and Find Full Text PDF

Meiotic crossovers are required for the faithful segregation of homologous chromosomes and to promote genetic diversity. However, it is unclear how crossover formation is regulated, especially on the XY chromosomes, which show a homolog only at the tiny pseudoautosomal region. Here, we show that ATF7IP2 is a meiosis-specific ortholog of ATF7IP and a partner of SETDB1.

View Article and Find Full Text PDF

The reproductive life span of females is largely determined by the number and quality of oocytes. Previously, we identified MEIOK21 as a meiotic recombination regulator required for male fertility. Here, we characterize the important roles of MEIOK21 in regulating female meiosis and oocyte number and quality.

View Article and Find Full Text PDF

Meiosis is the foundation of sexual reproduction, and crossover recombination is one hallmark of meiosis. Crossovers establish the physical connections between homolog chromosomes (homologs) for their proper segregation and exchange DNA between homologs to promote genetic diversity in gametes and thus progenies. Aberrant crossover patterns, e.

View Article and Find Full Text PDF

Background: As a group of membrane-anchored proteins, the proteins containing a disintegrin and metalloprotease domain (ADAMs) control many biological processes, especially for male fertility. Mouse was previously found to be specifically expressed in the somatic cells and germ cells of testes, but its functional role during spermatogenesis and male reproductive processes is still unknown.

Methods: -null mice were created using the CRISPR/Cas9 system.

View Article and Find Full Text PDF
Article Synopsis
  • The process of homologous recombination during meiosis is crucial for repairing DNA double-strand breaks, leading to genetic diversity through regulated crossover patterns.
  • Aberrant crossover patterns can lead to significant reproductive issues such as infertility and miscarriages, with a focus on the frequency of aneuploidy in human embryos, especially related to maternal age.
  • The review also highlights advances in understanding crossover regulation by meiotic chromosomes and identifies areas that need further research.
View Article and Find Full Text PDF

Repair of DNA double-strand breaks (DSBs) with homologous chromosomes is a hallmark of meiosis that is mediated by recombination 'bridges' between homolog axes. This process requires cooperation of DMC1 and RAD51 to promote homology search and strand exchange. The mechanism(s) regulating DMC1/RAD51-ssDNA nucleoprotein filament and the components of 'bridges' remain to be investigated.

View Article and Find Full Text PDF

A striking feature of human female sexual reproduction is the high level of gametes that exhibit an aberrant number of chromosomes (aneuploidy). A high baseline observed in women of prime reproductive age is followed by a dramatic increase in older women. Proper chromosome segregation requires one or more DNA crossovers (COs) between homologous maternal and paternal chromosomes, in combination with cohesion between sister chromatid arms.

View Article and Find Full Text PDF

Crossing over is a nearly universal feature of sexual reproduction. Here, analysis of crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamental, evolutionarily conserved feature of meiosis: within individual nuclei, crossover frequencies covary across different chromosomes. This effect results from per-nucleus covariation of chromosome axis lengths.

View Article and Find Full Text PDF

Globozoospermia has been reported to be a rare but severe causation of male infertility, which results from the failure of acrosome biogenesis and sperm head shaping. Variants of dpy-19-like 2 (DPY19L2) are highly related to globozoospermia, but related investigations have been mainly performed in patients from Western countries. Here, we performed a screening of DPY19L2 variants in a cohort of Chinese globozoospermic patients and found that five of nine patients carried DPY19L2 deletions and the other four patients contained novel DPY19L2 point mutations, as revealed by whole-exome sequencing.

View Article and Find Full Text PDF

Acephalic spermatozoa syndrome is a severe teratozoospermia that leads to male infertility. Our previous work showed that biallelic SUN5 mutations are responsible for acephalic spermatozoa syndrome in about half of affected individuals, while pathogenic mechanisms in the other individuals remain to be elucidated. Here, we identified a homozygous nonsense mutation in the testis-specific gene PMFBP1 using whole-exome sequencing in a consanguineous family with two infertile brothers with acephalic spermatozoa syndrome.

View Article and Find Full Text PDF

Testosterone is indispensable for sexual development and maintaining male characteristics, and deficiency of this hormone results in primary or late-onset hypogonadism (LOH). Testosterone is primarily produced in Leydig cells, where autophagy has been reported to be extremely active. However, the functional role of autophagy in testosterone synthesis remains unknown.

View Article and Find Full Text PDF

The maternal-to-zygotic transition (MZT) is essential for the developmental control handed from maternal products to newly synthesized zygotic genome in the earliest stages of embryogenesis, including maternal component (mRNAs and proteins) degradation and zygotic genome activation (ZGA). Various protein post-translational modifications have been identified during the MZT, such as phosphorylation, methylation and ubiquitination. Precise post-translational regulation mechanisms are essential for the timely transition of early embryonic development.

View Article and Find Full Text PDF

Meiosis is a specific type of cell division that is essential for sexual reproduction in most eukaryotes. Mitochondria are crucial cellular organelles that play important roles in reproduction, though the detailed mechanism by which the mitochondrial respiratory chain functions during meiosis remains elusive. Here, we show that components of the respiratory chain (Complexes I-V) play essential roles in meiosis initiation during the sporulation of budding yeast, Any functional defects in the Complex I component Ndi1p resulted in the abolishment of sporulation.

View Article and Find Full Text PDF

Acephalic spermatozoa syndrome has been reported for many decades; it is characterized by very few intact spermatozoa and tailless sperm heads in the semen and causes severe male infertility. The only gene in which mutations have been found to be associated with this syndrome encodes Sad1 and UNC84 domain-containing 5 (), a testis-specific nuclear envelope protein. The functional role of SUN5 has been well-studied in mouse models, but the molecular basis for the pathogenic effects of mutations in the human gene remains elusive.

View Article and Find Full Text PDF

SUN (Sad1 and UNC84 domain containing)-domain proteins are reported to reside on the nuclear membrane playing distinct roles in nuclear dynamics. SUN5 is a new member of the SUN family, with little knowledge regarding its function. Here, we generated mice and found that male mice were infertile.

View Article and Find Full Text PDF

The functional role of the ubiquitin-proteasome pathway during maternal-to-zygotic transition (MZT) remains to be elucidated. Here we show that the E3 ubiquitin ligase, Rnf114, is highly expressed in mouse oocytes and that knockdown of Rnf114 inhibits development beyond the two-cell stage. To study the underlying mechanism, we identify its candidate substrates using a 9,000-protein microarray and validate them using an in vitro ubiquitination system.

View Article and Find Full Text PDF

Sirt1 is a member of the sirtuin family of proteins and has important roles in numerous biological processes. Sirt1 mice display an increased frequency of abnormal spermatozoa, but the mechanism of Sirt1 in spermiogenesis remains largely unknown. Here, we report that Sirt1 might be directly involved in spermiogenesis in germ cells but not in steroidogenic cells.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is the leading cause of the death worldwide. An increasing number of studies have found that autophagy is involved in the progression or prevention of CVD. However, the precise mechanism of autophagy in CVD, especially the myocardial ischaemia-reperfusion injury (MI/R injury), is unclear and controversial.

View Article and Find Full Text PDF

Meiotic recombination is essential for fertility in most sexually reproducing species, but the molecular mechanisms underlying this process remain poorly understood in mammals. Here, we show that RNF20-mediated H2B ubiquitination is required for meiotic recombination. A germ cell-specific knockout of the H2B ubiquitination E3 ligase RNF20 results in complete male infertility.

View Article and Find Full Text PDF

Spermiogenesis is a complex and highly ordered spermatid differentiation process that requires reorganization of cellular structures. We have previously found that Atg7 is required for acrosome biogenesis. Here, we show that autophagy regulates the round and elongating spermatids.

View Article and Find Full Text PDF

Polyubiquitin chain linkage specificity or topology is essential for its role in diverse cellular processes. Previous studies pay more attentions to the linkage specificity of the first ubiquitin moieties, whereas, little is known about the editing mechanism of linkage specificity in longer polyubiquitin chains. gp78 and its cognate E2-Ube2g2 catalyze lysine48 (K48)-linked polyubiquitin chains to promote the degradation of targeted proteins.

View Article and Find Full Text PDF

The ectoplasmic specialization (ES) is essential for Sertoli-germ cell communication to support all phases of germ cell development and maturity. Its formation and remodeling requires rapid reorganization of the cytoskeleton. However, the molecular mechanism underlying the regulation of ES assembly is still largely unknown.

View Article and Find Full Text PDF

The Ate1 arginyltransferase (R-transferase) is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. Ate1 arginylates N-terminal Asp, Glu, or (oxidized) Cys. The resulting N-terminal Arg is recognized by ubiquitin ligases of the N-end rule pathway.

View Article and Find Full Text PDF

Approximately ten percent of male infertility is caused by non-obstructive azoospermia (NOA), but the etiologies of many NOA remain elusive. Recently, a genome-wide association study (GWAS) of NOA in Han Chinese men was conducted, and only a few genetic variants associated with NOA were found, which might have resulted from genetic heterogeneity. However, those variants that lack genome-wide significance might still be essential for fertility.

View Article and Find Full Text PDF