Publications by authors named "Yongli He"

The world's oceans are under threat from the prevalence of heatwaves caused by climate change. Despite this, there is a lack of understanding regarding their impact on seawater oxygen levels - a crucial element in sustaining biological survival. Here, we find that heatwaves can trigger low-oxygen extreme events, thereby amplifying the signal of deoxygenation.

View Article and Find Full Text PDF

High-valent metal-oxo species (HMOS) have been extensively recognized in advanced oxidation processes (AOPs) owing to their high selectivity and high chemical utilization efficiency. However, the interactions between HMOS and halide ions in sewage wastewater are complicated, leading to ongoing debates on the intrinsic reactive species and impacts on remediation. Herein, we prepared three typical HMOS, including Fe(IV), Mn(V)-nitrilotriacetic acid complex (Mn(V)NTA) and Co(IV) through peroxymonosulfate (PMS) activation and comparatively studied their interactions with Cl to reveal different reactive chlorine species (RCS) and the effects of HMOS types on RCS generation pathways.

View Article and Find Full Text PDF

Current computing systems rely on Boolean logic and von Neumann architecture, where computing cells are based on high-speed electron-conducting complementary metal-oxide-semiconductor (CMOS) transistors. In contrast, ions play an essential role in biological neural computing. Compared with CMOS units, the synapse/neuron computing speed is much lower, but the human brain performs much better in many tasks such as pattern recognition and decision-making.

View Article and Find Full Text PDF

Mixed conducting materials with both ionic and electronic conductivities have gained prominence in emerging applications. However, exploring material with on-demand ionic and electronic conductivities remains challenging, primarily due to the lack of correlating macroscopic conductivity with atom-scale structure. Here, the correlation of proton-electron conductivity and atom-scale structure in graphdiyne is explored.

View Article and Find Full Text PDF

Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems.

View Article and Find Full Text PDF

Peracetic acid (PAA) is regarded as an environmentally friendly oxidant because of its low formation of toxic byproducts. However, this study revealed the potential risk of generating disinfection byproducts (DBPs) when treating iodine-containing wastewater with PAA. The transformation efficiency of bisphenol A (BPA), a commonly detected phenolic contaminant and a surrogate for phenolic moieties in dissolved organic matter, by PAA increased rapidly in the presence of I, which was primarily attributed to the formation of active iodine (HOI/I) in the system.

View Article and Find Full Text PDF

COVID-19 pandemic appeared summer surge in 2022 worldwide and this contradicts its seasonal fluctuations. Even as high temperature and intense ultraviolet radiation can inhibit viral activity, the number of new cases worldwide has increased to >78% in only 1 month since the summer of 2022 under unchanged virus mutation influence and control policies. Using the attribution analysis based on the theoretical infectious diseases model simulation, we found the mechanism of the severe COVID-19 outbreak in the summer of 2022 and identified the amplification effect of heat wave events on its magnitude.

View Article and Find Full Text PDF

The horse genotype is one of three common Cryptosporidium spp. in equine animals and has been identified in some human cases. The species status of Cryptosporidium horse genotype remains unclear due to the lack of extensive morphological, biological, and genetic data.

View Article and Find Full Text PDF
Article Synopsis
  • The land surface is drying, contradicting the global trend of increased vegetation growth, particularly in different climates.
  • Satellite data from 1982 to 2014 revealed that the leaf area index (LAI) rose significantly while the aridity index (AI) increased only slightly.
  • Dry regions show a decreasing sensitivity of LAI to AI, whereas humid regions exhibit an increased sensitivity, largely driven by factors related to rising CO levels and their effects on temperature and aridity.
View Article and Find Full Text PDF

As an oxidant, peracetic acid (PAA) is gradually applied in advanced oxidation processes (AOPs) for pollutants degradation due to its high oxidation and low toxicity. In this study, the prepared CoFe-LDH showed excellent PAA activation ability for efficient degradation of various pharmaceuticals with a removal efficiency ranging from 82.3% to 100%.

View Article and Find Full Text PDF

Metasurfaces, also known as 2D artificial metamaterials, are attracting great attention due to their unprecedented performances and functionalities that are hard to achieve by conventional diffractive or refractive elements. With their sub-wavelength optical scatterers, metasurfaces have been utilized to freely modify different characteristics of incident light such as amplitude, polarization, phase, and frequency. Compared to traditional bulky lenses, metasurface lenses possess the advantages of flatness, light weight, and compatibility with semiconductor manufacture technology.

View Article and Find Full Text PDF

Background: The development of cardiac fibrosis involves the activation of cardiac fibroblasts (CFs) and their differentiation into myofibroblasts, which leads to the disruption of the extracellular matrix network. In the past few years, microRNAs (miRNA) have been described as potential targets for treating cardiac diseases. Although miR-338-3p has been shown to participate in the development of carcinoma, whether it affects cardiac fibrosis is unclear.

View Article and Find Full Text PDF

The biological visual system encodes optical information into spikes and processes them by the neural network, which enables the perception with high throughput of visual processing with ultralow energy budget. This has inspired a wide spectrum of devices to imitate such neural process, while precise mimicking such procedure is still highly required. Here, a highly bio-realistic photoelectric spiking neuron for visual depth perception is presented.

View Article and Find Full Text PDF

Neuromorphic devices that can emulate the bionic sensory and perceptual functions of neural systems have great applications in personal healthcare monitoring, neuro-prosthetics, and human-machine interfaces. In order to realize bionic sensing and perception, it's crucial to prepare neuromorphic devices with the function of perceiving environment in real-time. Up to now, lots of efforts have been made in the incorporation of the bio-inspired sensing and neuromorphic engineering in the booming artificial intelligence industry.

View Article and Find Full Text PDF

Recently, an increasing number of works have been reported about iron-based materials applied as catalysts in peroxide activation processes to degrade pollutants in water. Iron-based catalysts include synthetic and natural iron-based materials. However, some synthetic iron-based materials are difficult to scale up in the practical applications due to high cost and serious secondary environmental pollution.

View Article and Find Full Text PDF

Background: Atherosclerosis is a chronic inflammatory disease responsible for thrombosis, blood supply disorders, myocardial infarction and strokes, eventually leading to increased deaths and reduced quality of life. As inflammation plays a vital role in the development of this disease, the present study aims to investigate whether urinary trypsin inhibitor (UTI) with anti-inflammatory property can inhibit the proliferation, invasion and phenotypic switching of PDGF-BB-induced vascular smooth muscle cells (VSMCs) and probe its potential mechanism.

Methods: Western blot was used to detect the expressions of the proteins related to the Akt/eNOS/NO/cGMP signaling pathway, phenotypic switching and proliferation.

View Article and Find Full Text PDF

Background: Heart failure (HF) is an end stage heart condition with poor prognosis which brings about tremendous social medical cost. Along decades, mechanism and treatments of HF have been under restless research.

Methods: In the present study, we first established pressure overload induced HF model using transaortic arch constriction (TAC) method in mice.

View Article and Find Full Text PDF

To develop high-energetic stability nitroform compounds, three types of nitroform derivatives based on hexanitroethane structure are designed. The guidelines for selecting these compounds are based on (1) constructing a flexible molecule and weakening the external force by elastic deformation and (2) forming negative ion or introducing electron-rich group to eliminate the electron-deficient situation. The conformations and some important properties of them are calculated at B3LYP/6-311 + G(d) level.

View Article and Find Full Text PDF

The human memory system plays an indispensable role in oblivion, learning, and memorization. Implementing a memory system within electronic devices contributes an important step toward constructing a neuromorphic system that emulates advanced mental functions of the human brain. Given the complex time-tailoring requirement, integrating a human memory system into one system is a great challenge.

View Article and Find Full Text PDF

Background: Adiponectin and 8-Hydroxy-2'-deoxyguanosine (8-OHdG) are identified as important biomarkers in the pathogenesis process of type 2 diabetes mellitus (T2DM). Whether adiponectin and 8-OHdG have a relation to cognitive decline in the elderly T2DM patients has been poorly understood. The aim of this study was to evaluate the effects of adiponectin and 8-OHdG in the elderly patients with T2DM and to determine the role of adiponectin and 8-OHdG in the cognitive impairment of the elderly patients with T2DM.

View Article and Find Full Text PDF

All external sensory stimuli produce a spatiotemporal pattern of action potentials, which is transmitted to the biological neural system to be processed. The relative timing of synaptic spikes from different presynaptic neurons represents the features of the stimuli. A fundamental prerequisite in cortical information processing is the discrimination of different spatiotemporal input sequences.

View Article and Find Full Text PDF

Artificial synapses/neurons based on electronic/ionic hybrid devices have attracted wide attention for brain-inspired neuromorphic systems since it is possible to overcome the von Neumann bottleneck of the neuromorphic computing paradigm. Here, we report a novel photoneuromorphic device based on printed photogating single-walled carbon nanotube (SWCNT) thin film transistors (TFTs) using lightly n-doped Si as the gate electrode. The drain currents of the printed SWCNT TFTs can gradually increase to over 3000 times of their starting value after being pulsed with light stimulation, and the electrical signals can maintain for over 10 min.

View Article and Find Full Text PDF

Just as biological synapses provide basic functions for the nervous system, artificial synaptic devices serve as the fundamental building blocks of neuromorphic networks; thus, developing novel artificial synapses is essential for neuromorphic computing. By exploiting the band alignment between 2D inorganic and organic semiconductors, the first multi-functional synaptic transistor based on a molybdenum disulfide (MoS )/perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) hybrid heterojunction, with remarkable short-term plasticity (STP) and long-term plasticity (LTP), is reported. Owing to the elaborate design of the energy band structure, both robust electrical and optical modulation are achieved through carriers transfer at the interface of the heterostructure, which is still a challenging task to this day.

View Article and Find Full Text PDF

Spatial coordinate and visual orientation recognition in cortical cells play important roles in the visual system. Herein, spatiotemporally processed visual neurons are mimicked by a facile coplanar multigate two-dimensional (2D) MoS electric-double-layer transistor with proton-conducting poly(vinyl alcohol) electrolytes as laterally coupled gate dielectrics. Fundamental neuromorphic behaviors, e.

View Article and Find Full Text PDF

The S-100β levels are associated with a variety of acute disorders and other chronic diseases, such as head injury, stroke, metastatic melanoma, cardiac surgery, bone fractures, burns and contusions. The serum S-100β levels seem to increase with the volume of tissue damage. Higher serum S-100β levels have been observed after brain damage or stroke.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono1eogs5dkda39a0ll0verlga44mpj51h): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once