A facile method that combines alkali-assisted oxidation and -SH chelation with a click chemistry reaction was employed to create an F-POSS polymer surface (fluorinated octavinyl polyhedral oligomeric silsesquioxane polymer)-based Cu mesh (F-POSS-OM). The as-prepared F-POSS-OM surface displayed a cohering hierarchical nano-F-POSS polymer granule/micro-Cu(OH)2 wire structure, which provided a re-entrant geometry needed for liquid-repellency and low liquid sliding angles (<15°). Moreover, the easy-prepared structure endows the F-POSS-OM with remarkable durability for mechanical and chemical damages, including wear abrasion, tape-peeling, 100 cm-height hammer impact, severe hand twisting, strong acid/base/salt solutions, and high temperatures.
View Article and Find Full Text PDFStimuli-responsive polymeric micelles (PMs) have shown great potential in drug delivery and controlled release in cancer chemotherapy. Herein, inspired by the features of the tumor microenvironment, we developed dual pH/redox-responsive mixed PMs which are self-assembled from two kinds of amphiphilic diblock copolymers (poly(ethylene glycol) methyl ether-b-poly(β-amino esters) (mPEG-b-PAE) and poly(ethylene glycol) methyl ether-grafted disulfide-poly(β-amino esters) (PAE-ss-mPEG)) for anticancer drug delivery and controlled release. The co-micellization of two copolymers is evaluated by measurement of critical micelle concentration (CMC) values at different ratios of the two copolymers.
View Article and Find Full Text PDF