Point-of-care detection of tumor biomarkers with high sensitivity remains an enormous challenge in the early diagnosis and mass screening of cancer. Fluorescent lateral flow immunoassay (LFA) is an attractive platform for point-of-care testing due to its inherent advantages. Particularly, a fluorescent probe is crucial to improving the analytical performance of the LFA platform.
View Article and Find Full Text PDFFluorescent lateral flow immunoassay (LFA) is one of the most common analytical platforms for point-of-care testing (POCT), which is capable of facile and early screening of biomarkers. Notably, fluorescent probes play a decisive role in analytical performances of LFA. Herein, we report a novel LFA based on the rare earth doped nanoparticles (RENPs) emitting in the second near-infrared (NIR-II) window for the detection of biomarkers, such as carcinoembryonic antigen (CEA).
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2022
In microsurgery, it is always difficult to accurately identify the blood supply with ease, such as vascular anastomosis, digit replantation, skin avulsion reconstruction and flap transplantation. Near-infrared window I (NIR-I, 700-900 nm) imaging has many clinical applications, whereas near-infrared window II (NIR-II, 1,000-1700 nm) imaging has emerged as a highly promising novel optical imaging modality and used in a few clinical fields recently, especially its penetration distance and noninvasive characteristics coincide with the needs of microsurgery. Therefore, a portable NIR-II imaging instrument and the Food and Drug Administration (FDA) approved indocyanine green (ICG) were used to improve the operation efficiency in microsurgery of 39 patients in this study.
View Article and Find Full Text PDFNanozymes with multienzyme-mimicking activities have shown great potential in cancer therapy due to their ability to modulate the complex tumor microenvironment (TME). Herein, a second near-infrared (NIR-II) photothermal-nanocatalyst by decorating Bi Te nanosheets with ultrasmall Au/Pd bimetallic nanoparticles (Bi Te -Au/Pd) to reverse the immunosuppressive TME is developed. The peroxidase (POD)-like and catalase (CAT)-like activities, and glutathione (GSH) consumption capacity of Au/Pd modulates the TME by disrupting the intracellular redox homeostasis and relieving hypoxia in the TME.
View Article and Find Full Text PDFFerroptosis therapy (FT) is an attractive strategy to selectively damage cancer cells through lipid peroxide (LPO) over-accumulation. However, this therapy suffers from poor therapeutic efficacy due to the limited Fenton reaction efficiency and the evolved intrinsic resistance mechanism in the tumor microenvironment (TME). The exploitation of novel ferroptosis inducers is of significance for improving the efficacy of FT.
View Article and Find Full Text PDFCopper(II) diethyldithiocarbamate complex (CuET), the metabolite of disulfiram complexed with copper, is the component responsible for cancer treatment efficacy of disulfiram. But the hydrophobic property of CuET limits its use in vivo, and an appropriate drug delivery system needs to be developed. Ultrasmall melanin nanoparticle (M-Dot) with excellent biosafety and biocompatibility properties has been synthesized in our previous studies.
View Article and Find Full Text PDFNanomicro Lett
January 2020
Photothermal therapy (PTT) using near-infrared (NIR) light for tumor treatment has triggered extensive attentions because of its advantages of noninvasion and convenience. The current research on PTT usually uses lasers in the first NIR window (NIR-I; 700-900 nm) as irradiation source. However, the second NIR window (NIR-II; 1000-1700 nm) especially NIR-IIa window (1300-1400 nm) is considered much more promising in diagnosis and treatment as its superiority in penetration depth and maximum permissible exposure over NIR-I window.
View Article and Find Full Text PDFAdv Healthc Mater
December 2019
Endoscopy is a clinical gold standard to exam the interior of a hollow organ or body cavity. For the first of time, this study presents the design and construction of a fluorescent endoscopic system that harnesses the power of the second near-infrared window II (NIR-II) fluorescence imaging. An NIR-II fluorescent molecular probe, indocyanine green (ICG) conjugated bevacizumab (Bev-ICG) that targets vascular endothelial growth factor (VEGF), is successfully synthesized and evaluated along with the NIR-II endoscopy imaging system.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
January 2012
For non-invasive measurement of human blood cholesterol concentration, this experiment was carried out on 80 volunteers clinically. In vivo dynamic spectra of fingers were achieved and biochemical examinations of blood components contents including cholesterol were get as soon as possible. BP artificial neural network with inputs of dynamic spectra plus energy of harmonic waves processed by Principal Components Analysis(PCA) was used to establish the model of the total cholesterol values.
View Article and Find Full Text PDF