Automated large-scale farmland preparation operations face significant challenges related to path planning efficiency and uniformity in resource allocation. To improve agricultural production efficiency and reduce operational costs, an enhanced method for planning land preparation paths is proposed. In the initial stage, unmanned aerial vehicles (UAVs) are employed to collect data from the field, which is then used to construct accurate farm models.
View Article and Find Full Text PDFClimate change inevitably affects vegetation growth in the Tibetan Plateau (TP). Understanding the dynamics of vegetation phenology and the responses of vegetation phenology to climate change are crucial for evaluating the impacts of climate change on terrestrial ecosystems. Despite many relevant studies conducted in the past, there still remain research gaps concerning the dominant factors that induce changes in the start date of the vegetation growing season (SOS).
View Article and Find Full Text PDFImage fusion technology can process multiple single image data into more reliable and comprehensive data, which play a key role in accurate target recognition and subsequent image processing. In view of the incomplete image decomposition, redundant extraction of infrared image energy information and incomplete feature extraction of visible images by existing algorithms, a fusion algorithm for infrared and visible image based on three-scale decomposition and ResNet feature transfer is proposed. Compared with the existing image decomposition methods, the three-scale decomposition method is used to finely layer the source image through two decompositions.
View Article and Find Full Text PDFComput Intell Neurosci
December 2021
With the development of modern science and technology, the field of UAV has also entered the era of high-tech exploration. Among them, the task planning, allocation, path exploration, and algorithm optimization of heterogeneous multi UAV technology are our main concerns. Based on the above situation, this paper proposes a heterogeneous multi UAV task planning technology based on ant colony algorithm powered BP neural network.
View Article and Find Full Text PDFThe development of efficient and stable noble-metal-free electrocatalysts for hydrogen evolution reaction (HER) in alkaline media is still a challenge. Herein, a hybrid material formed by the interconnection of Ni W intermetallic compound with metallic W is demonstrated for HER. The Ni W -W hybrid is prepared by the atmosphere- and thermal-induced phase-separation strategy from a single-phase precursor (NiWO ), which gives Ni W -W hybrid abundant and tight interfaces.
View Article and Find Full Text PDFIt is a great challenge to fabricate electrode with simultaneous high activity for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, a high-performance bifunctional electrode formed by vertically depositing a porous nanoplate array on the surface of nickel foam is provided, where the nanoplate is made up by the interconnection of trinary Ni-Fe-Mo suboxides and Ni nanoparticles. The amorphous Ni-Fe-Mo suboxide and its in situ transformed amorphous Ni-Fe-Mo (oxy)hydroxide acts as the main active species for HER and OER, respectively.
View Article and Find Full Text PDFRed phosphorus (RP) as the anode material for the sodium-ion battery (SIB) possesses a high energy density, but the poor electronic conductivity and huge volume change during Na insertion/extraction restrict its application. In this work, the edible fungus slag-derived porous carbon (PC) is adopted as a carbon matrix to combine with RP to form PC@RP composites through a facile vaporization-condensation approach. The conductive porous carbon architecture improves the transfer of electron and Na in the composite.
View Article and Find Full Text PDFIn this work, agricultural waste edible fungus slag derived nitrogen-doped hierarchical porous carbon (EFS-NPC) was prepared by a simple carbonization and activation process. Owing to the biodegradation and infiltrability of hyphae, this EFS-NPC possessed an ultra-high specific surface area (3342 m/g), large pore volume (1.84 cm/g) and abundant micropores and mesopores.
View Article and Find Full Text PDFThe development of high-performance electrocatalyst with earth-abundant elements for water-splitting is a key factor to improve its cost efficiency. Herein, a noble metal-free bifunctional electrocatalyst was synthesized by a facile pyrolysis method using sucrose, urea, Co(NO) and sulfur powder as raw materials. During the fabrication process, Co, S co-doped graphitic carbon nitride (g-CN) was first produced, and then this in-situ-formed template further induced the generation of a Co, N, S tri-doped graphene coupled with Co nanoparticles (NPs) in the following pyrolysis process.
View Article and Find Full Text PDFThe spinel LiTiO/rutile-TiO@carbon (LTO-RTO@C) composites were fabricated via a hydrothermal method combined with calcination treatment employing glucose as carbon source. The carbon coating layer and the in situ formed rutile-TiO can effectively enhance the electric conductivity and provide quick Li diffusion pathways for LiTiO. When used as an anode material for lithium-ion batteries, the rate capability and cycling stability of LTO-RTO@C composites were improved in comparison with those of pure LiTiO or LiTiO/rutile-TiO.
View Article and Find Full Text PDFAn approximately four months long glasshouse experiment was conducted to examine the effects of elevated carbon dioxide (CO(2)) concentration (1,000 +/- 50 micromol mol(-1)) in the atmosphere on biomass accumulation and allocation pattern, clonal growth and nitrogen (N), phosphorus (P) accumulation by the submerged plant Vallisneria spinulosa Yan. Elevated CO(2) significantly increased V. spinulosa total fresh biomass ( approximately 130%) after 120 days, due to more biomass accumulation in all morphological organs than in those at ambient CO(2) (390 +/- 20 micromol mol(-1)).
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
February 2002
The bioaccumulation and degradation of anthracene by the green alage(Chlorella prothecoides) under autotrophic and heterotrophic conditions were studied. About 29% and 20% of anthracene(original concentration 1.0 mg.
View Article and Find Full Text PDF