Transparent soil (TS) presents immense potential for root phenotyping due to its ability to facilitate high-resolution imaging. However, challenges related to transparency, mechanical properties, and cost hinder its development. Herein, we introduce super-transparent soil (s-TS) prepared via the droplet method using low acyl gellan gum and hydroxyethyl cellulose crosslinked with magnesium ions.
View Article and Find Full Text PDFPlant roots are highly sensitive to physical stress in the soil, with appropriate mechanical impedance promoting root elongation and lateral root growth. However, few studies have quantitatively explored the relationship between the mechanical impedance of the growth medium and the phenotypes of plant roots. In this study, we used a tensile machine equipped with a self-made steel needle mimicking the root tip to measure the force needed to penetrate the hydrogel medium (agar, low acyl gellan gum, and κ-carrageenan), providing insights into the force required for the rapeseed root tip to enter the medium following germination.
View Article and Find Full Text PDFWe present a new light cleavable polymer containing -nitrobenzene thioacetal groups in the main chain. By conjugation to a PEG block, we synthesized block copolymers capable of forming nanoparticles in aqueous solution. We studied drug encapsulation and release using the model drug Nile Red.
View Article and Find Full Text PDFPolymersomes are a class of artificial liposomes, assembled from amphiphilic synthetic block copolymers, holding great promise toward applications in nanomedicine. The diversity in polymersome morphological shapes and, in particular, the precise control of these shapes, which is an important aspect in drug delivery studies, remains a great challenge. This is due to a lack of general methodologies that can be applied and the inability to capture the morphologies at the nanometer scale.
View Article and Find Full Text PDFReshaping polymersomes remains a challenge for both size and shape control, methodology development, and mechanism understanding, which hindered their application in nanomedicine and nanomachine. Unlike liposome, polymersomes are capable of maintaining their shape due to their rigid and glassy membrane. Here we use the Hofmeister effect to guide the shape control of polymersome by tuning the ion type and concentration.
View Article and Find Full Text PDFA brush type nanomotor was fabricated via assembly assistant polymerization of poly(ionic liquid) and surface grafting polymerization. The method for large-scale fabrication of brush nanomotors with soft surfaces is described. These soft locomotive particles are based on core-shell brush nanoparticles assembled from poly(ionic liquid) as core and thermoresponsive PNIPAM as brush shells on which platinum nanoparticle (PtNP) were grown in situ.
View Article and Find Full Text PDFAccurate control of the shape transformation of polymersome is an important and interesting challenge that spans across disciplines such as nanomedicine and nanomachine. Here, we report a fast and facile methodology of shape manipulation of polymersome via out-of-equilibrium polymer self-assembly and shape change by chemical addition of additives. Due to its increased permeability, hydrophilicity, and fusogenic properties, poly(ethylene oxide) was selected as the additive for bringing the system out of equilibrium via fast addition into the polymersome organic solution.
View Article and Find Full Text PDFSelf-propelled catalytic micro- and nanomotors have been the subject of intense study over the past few years, but it remains a continuing challenge to build in an effective speed-regulation mechanism. Movement of these motors is generally fully dependent on the concentration of accessible fuel, with propulsive movement only ceasing when the fuel consumption is complete. Here we report a demonstration of control over the movement of self-assembled stomatocyte nanomotors via a molecularly built, stimulus-responsive regulatory mechanism.
View Article and Find Full Text PDFWe report the self-assembly of a biodegradable platinum nanoparticle-loaded stomatocyte nanomotor containing both PEG-b-PCL and PEG-b-PS as a potential candidate for anticancer drug delivery. Well-defined stomatocyte structures could be formed even after incorporation of 50% PEG-b-PCL polymer. Demixing of the two polymers was expected at high percentage of semicrystalline poly(ε-caprolactone) (PCL), resulting in PCL domain formation onto the membrane due to different properties of two polymers.
View Article and Find Full Text PDFWith a convenient bottom-up approach, magnetic metallic nickel is grown in situ of a supramolecular nanomotor using the catalytic activities of preloaded platinum nanoparticles. After introducing magnetic segments, simultaneous guidance and steering of catalytically powered motors with additional magnetic fields are achieved. Guided motion in a tissue model is demonstrated.
View Article and Find Full Text PDFIonic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.
View Article and Find Full Text PDFThe copolymer of starch grafted with polystyrene (starch-g-PS) was synthesized with high grafting percentage by utilizing the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac) as solvent and potassium persulfate as initiator. The effect of various parameters upon the polymerization were studied including: initiator concentration, styrene:starch weight ratio, the reaction time and temperature. Grafting percentages were calculated using an FT-IR calibration method, with values up to 114%.
View Article and Find Full Text PDFMacromol Rapid Commun
November 2013
The synthesis of poly(ionic liquid) (PIL) nanoparticles grafted with a poly(N-isopropyl acrylamide) (PNIPAM) brush shell is reported, which shows responsiveness to temperature and ionic strength in an aqueous solution. The PIL nanoparticles are first prepared via aqueous dispersion polymerization of a vinyl imidazolium-based ionic liquid monomer, which is purposely designed to bear a distal atom transfer radical polymerization (ATRP) initiating group attached to the long alkyl chain via esterification reaction. The size of the PIL nanoparticles can be readily tuned from 25 to 120 nm by polymerization at different monomer concentrations.
View Article and Find Full Text PDFA cationic polyelectrolyte based on the styrenic ionic liquid tributyl-4-vinylbenzylphosphonium pentanesulfonate was found to undergo a lower critical solution temperature (LCST)-type phase transition in aqueous solutions. This phase transition occurs in a wide temperature range in terms of polymer concentration as well as type and concentration of externally added salts. Anion exchange and salting out effects are responsible for the flexible phase transition temperature.
View Article and Find Full Text PDF