Publications by authors named "Yongjuan Xin"

Aging is an intricate process involving interactions among multiple factors, which is one of the main risks for chronic diseases, including Alzheimer's disease (AD). As a member of cysteine protease, cathepsin S (CTSS) has been implicated in inflammation across various diseases. Here, we investigated the role of neuronal CTSS in aging and AD started by examining CTSS expression in hippocampus neurons of aging mice and identified a significant increase, which was negatively correlated with recognition abilities.

View Article and Find Full Text PDF

Accumulating evidence indicates that there is a trend of early puberty onset in humans. The early timing of puberty has raised concerns due to its association with significant negative health outcomes. However, overall impact and potential risk of early puberty remain uncertain.

View Article and Find Full Text PDF

To investigate the mechanism of Silent information regulator 1 (SIRT1) regulation of DNA methylation and thus the expression of synaptic plasticity-related genes induced by lead (Pb) exposure, the early-life Sprague-Dawley rats and PC12 cells were used to establish Pb exposure models and treated with SIRT1 agonists (resveratrol and SRT1720). In vivo results demonstrated that Pb exposure increased the expression of DNMTs, MeCP2, PP1 and cleaved caspase3, decreased the expression of SIRT1, BDNF and RELIN and altered DNA methylation levels of synaptic plasticity genes. Moreover, we observed marked pathological damage in the hippocampal CA1 region of the 0.

View Article and Find Full Text PDF

This study examined the neuroprotective properties of resveratrol (Res) and its target sirtuin1 (SIRT1) against lead (Pb)-mediated toxicity and discovered that both resveratrol treatment and SIRT1 overexpression restored blocked autophagic flux as well as reduced β-amyloid (Aβ) contents. Four-week-old male C57BL/6 mice were employed to consumed 0.2% Pb(Ac) solution or deionized water for 3 months followed by 12 months of Res (50 mg/kg BW) or vehicle gavage.

View Article and Find Full Text PDF

Background: Although prior studies showed a correlation between environmental manganese (Mn) exposure and neurodevelopmental disorders in children, the results have been inconclusive. There has yet been no consistent biomarker of environmental Mn exposure. Here, we summarized studies that investigated associations between manganese in biomarkers and childhood neurodevelopment and suggest a reliable biomarker.

View Article and Find Full Text PDF

For more than 150 years, it is known that occupational overexposure of manganese (Mn) causes movement disorders resembling Parkinson's disease (PD) and PD-like syndromes. However, the mechanisms of Mn toxicity are still poorly understood. Here, we demonstrate that Mn dose- and time-dependently blocks the protein translation of amyloid precursor protein (APP) and heavy-chain Ferritin (H-Ferritin), both iron homeostatic proteins with neuroprotective features.

View Article and Find Full Text PDF

Several B vitamins are essential in the one-carbon metabolism pathway, which is central to DNA methylation, synthesis, and repair. Moreover, an imbalance in this pathway has been linked to certain types of cancers. Here, we performed a meta-analysis in order to investigate the relationship between the intake of four dietary one-carbon metabolism-related B vitamins (B2, B6, folate, and B12) and the risk of esophageal cancer (EC).

View Article and Find Full Text PDF

SLC39A14 (also known as ZIP14), a member of the SLC39A transmembrane metal transporter family, has been reported to mediate the cellular uptake of iron and zinc. Recently, however, mutations in the gene have been linked to manganese (Mn) accumulation in the brain and childhood-onset parkinsonism dystonia. It has therefore been suggested that deficiency impairs hepatic Mn uptake and biliary excretion, resulting in the accumulation of Mn in the circulation and brain.

View Article and Find Full Text PDF

Microcystin-LR (MC-LR) is a ubiquitous peptide that exhibits strong reproductive toxicity, although the mechanistic basis for such toxicity remains largely unknown. The present study was conducted to investigate the mechanisms underlying the adverse effects of exposure to MC-LR in Chinese hamster ovary (CHO) cells. The results showed that MC-LR inhibited the proliferation of CHO cells significantly, with an IC of 10 μM.

View Article and Find Full Text PDF

Microcystins (MCs), the secondary metabolites of blue-green algae, are ubiquitous and major cyanotoxin contaminants. Besides the hepatopancreas/liver, the reproductive system is regarded as the most important target organ for MCs. Although reactive oxygen species (ROS) have been implicated in MCs-induced reproductive toxicity, the role of MCs in this pathway remains unclear.

View Article and Find Full Text PDF

Epigenetic regulations including DNA methylation and demethylation play critical roles in neural development. However, whether DNA methylation and demethylation may play a role in neuronal cell death remains largely unclear. Here we report that the blockade of DNA methyltransferase inhibits apoptosis of cerebellar granule cells and cortical neurons in response to oxidative stress.

View Article and Find Full Text PDF

Methyl CpG binding protein 2 (MeCP2) binds to methylated DNA and acts as a transcriptional repressor. Mutations of human MECP2 gene lead to Rett syndrome, a severe neural developmental disorder. Here, we report that the MeCP2 protein can be modified by covalent linkage to small ubiquitin-like modifier (SUMO) and SUMOylation at lysine 223 is necessary for its transcriptional repression function.

View Article and Find Full Text PDF

The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain.

View Article and Find Full Text PDF