REBa Cu O (REBCO, RE = rare earth)-coated conductor is a competitive option in terms of current-carrying capacity and high-stress durability in developing high-field magnets for nuclear magnetic resonance (NMR) research. Meanwhile, a technical challenge in utilizing a stand-alone REBCO NMR magnet is an unexpected difference in the field uniformity between the designed and measured values after being constructed and charged, i.e.
View Article and Find Full Text PDFThe structural analysis of nanocrystals via transmission electron microscopy (TEM) is a valuable technique for the material science field. Recently, two-dimensional images by scanning TEM (STEM) and energy-dispersive X-ray spectroscopy (EDS) have successfully extended to three-dimensional (3D) imaging by tomography. However, despite improving TEM instruments and measurement techniques, detector shadowing, the missing-wedge problem, X-ray absorption effects, etc.
View Article and Find Full Text PDFMetal-halide perovskite nanocrystals (NCs) have emerged as suitable light-emitting materials for light-emitting diodes (LEDs) and other practical applications. However, LEDs with perovskite NCs undergo environment-induced and ion-migration-induced structural degradation during operation; therefore, novel NC design concepts, such as hermetic sealing of the perovskite NCs, are required. Thus far, viable synthetic conditions to form a robust and hermetic semiconducting shell on perovskite NCs have been rarely reported for LED applications because of the difficulties in the delicate engineering of encapsulation techniques.
View Article and Find Full Text PDFPostmodification of nanocrystals through cation exchange has been very successful in diversifying nanomaterial compositions while retaining the structural motif. Copper compound nanoparticles are particularly useful as templates because of inherent defects serving as effective cation diffusion routes and excellent cation mobility. Therefore, the development of shape-controlled multianion systems, such as copper phosphosulfide, can potentially lead to the formation of diverse metal phosphosulfide nanomaterials that have otherwise inaccessible compositions and structures.
View Article and Find Full Text PDFNanocrystals with multiple compositions and heterointerfaces have received great attention due to promising multifunctional and synergistic physicochemical properties. In particular, heterointerfaces have been at the focal point of nanocatalyst research because the strain caused by lattice mismatches between different phases is the dominant determinant of surface energy and catalytic activity. The ensemble effects of different material phases have also contributed to the interest in heterointerfaced multicomponent materials.
View Article and Find Full Text PDF