Publications by authors named "Yongjiong Ni"

Article Synopsis
  • The study examined how adding 20% enhanced biological phosphorus removal (EBPR) activated sludge to a bulking activated sludge (BAS) reactor improved sludge settleability and resolved bulking issues within 16 days.
  • The process also led to BAS granulation in an additional 16 days, with EBPR activity helping to inhibit filamentous bacteria and support slow-growing organisms that fostered aggregation.
  • Results indicated that this method not only controlled sludge bulking but also increased total nitrogen removal from 59.4% to 71.7% due to the formation of mature aerobic granular sludge (AGS).
View Article and Find Full Text PDF

Excessive proliferation of filamentous bacteria within activated sludge leads to sludge structural instability and diminished settling properties, which is a prevalent issue in tannery wastewater treatment. Based on available information, there is a lack of research on the impact of particle addition on filamentous bacteria in activated sludge, specifically with respect to a reduction in sludge bulking. Therefore, polyethylene terephthalate (PET) was selected as the test material to elucidate the effect of particles on sludge bulking.

View Article and Find Full Text PDF

Aerobic granular sludge (AGS) is a promising technology for wastewater treatment. AGS formation belongs to microbial self-aggregation. Investigation of the formation and stability of AGS is widely paid attention to, in particular the structure stability of large size granules.

View Article and Find Full Text PDF

Systematically studied the oxidation of enrofloxacin (ENR) in a nanoscale zero-valent copper (nZVC)-activated molecular oxygen system. The results show that nanoscale copper powder has a higher surface area than microscale copper powder, non-porous structure, and rough surface and exists in form of agglomerates. Nanoscale ZVC shows a superior activated performance toward molecular oxygen compared with microscale ZVC, which is due to its larger specific area and the fact that it corrodes easier.

View Article and Find Full Text PDF

A continuous-flow reactor with two-zone sedimentation tank (CFR-TST) was developed to evaluate the formation of aerobic granular sludge (AGS). Micropowder made of excess sludge was added for a while in the CFR-TST, and selection pressure associated with settling time was created by the two-zone sedimentation tank. To avoid AGS disintegration, an airlift system for sludge return was used.

View Article and Find Full Text PDF

The effect of fermentation pH (uncontrolled, 4 and 10) on the releases of carbon source and phosphorus from nitrifying aerobic granular sludge (N-AGS) was investigated. Meanwhile, metal ion concentration and microbial community characterization were explored during N-AGS fermentation. The results indicated that N-AGS fermentation at pH 10 significantly promoted the releases of soluble chemical oxygen demand (SCOD) and total volatile fatty acids (TVFAs).

View Article and Find Full Text PDF

Removing nitrogen from wastewater with low chemical oxygen demand/total nitrogen (COD/TN) ratio is a difficult task due to the insufficient carbon source available for denitrification. Therefore, in the present work, a novel sequencing batch biofilm reactor (NSBBR) was developed to enhance the nitrogen removal from wastewater with low COD/TN ratio. The NSBBR was divided into two units separated by a vertical clapboard.

View Article and Find Full Text PDF

It has been acknowledged by WHO that styrene is a carcinogen which does great harm to human’s health and natural environment. In recent years, given the frequency of the leakage accidents of styrene that has given rise to potential safety hazard to drinking water, the fast detection of styrene pollutant in water and treatment of accidental release are of great significance for supplying safe drinking water. Total scanning fluorescence technique was used to unravel the 3D fluorescence feature of styrene by scanning its aqueous solution.

View Article and Find Full Text PDF

A modified oxidation ditch (MOD) with an adjustable volume intraclarifier was proposed and used to achieve aerobic sludge granulation in continuous flow process. This MOD with working volume of 60L treated onsite wastewater from a town. Excellent aerobic granules with mean diameter of 600μm and sludge volume index (SVI) of 44mL/g were obtained in 120day.

View Article and Find Full Text PDF

Aerobic granules were cultivated in a sequencing batch reactor (SBR). COD and ammonia nitrogen removal rate were 94% and 99%, respectively. The diameter, settling velocity and SVI10 of granules ranged from 2 to 5 mm, 80 to 110 m/h and about 40 mL/g, respectively.

View Article and Find Full Text PDF