Publications by authors named "Yongjing Gao"

Article Synopsis
  • * Follistatin (FST), a protein that can counteract cytokines, was found to be increased in specific neurons after nerve injury, and reducing or eliminating FST decreased pain and neuron hyperactivity.
  • * Studies showed that FST binds to the insulin-like growth factor-1 receptor (IGF1R), leading to increased neuron excitability, which could be targeted for future treatments of neuropathic pain.
View Article and Find Full Text PDF

The tumor microenvironment (TME) facilitates tumor development through intricate intercellular signaling, thereby supporting tumor growth and suppressing the immune response. Thyroid hormone receptor interactor 13 (TRIP13), an AAA+ ATPase, modulates the conformation of client macromolecules, consequently influencing cellular signaling pathways. TRIP13 has been implicated in processes such as proliferation, invasion, migration, and metastasis during tumor progression.

View Article and Find Full Text PDF

Nitrogen narcosis is a neurological syndrome that manifests when humans or animals encounter hyperbaric nitrogen, resulting in a range of motor, emotional, and cognitive abnormalities. The anterior cingulate cortex (ACC) is known for its significant involvement in regulating motivation, cognition, and action. However, its specific contribution to nitrogen narcosis-induced hyperlocomotion and the underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Neuropathic pain is a highly prevalent and refractory condition, yet its mechanism remains poorly understood. While NR1, the essential subunit of NMDA receptors, has long been recognized for its pivotal role in nociceptive transmission, its involvement in presynaptic stimulation is incompletely elucidated. Transcription factors can regulate the expression of both pro-nociceptive and analgesic factors.

View Article and Find Full Text PDF
Article Synopsis
  • Lysosomes are essential organelles that help keep cells balanced and manage key processes by connecting various metabolic pathways.* -
  • Ion channels in lysosomes (like TRPML1-3 and TPC1/2) control the movement of important ions (like Ca, Cl, Na) in response to different cellular needs and stresses.* -
  • Genetic changes in these ion channels can lead to serious diseases, including lysosomal storage conditions, neurodegenerative issues, and cancer, making them potential targets for new drug developments.*
View Article and Find Full Text PDF

The infralimbic (IL) cortex dysfunction has been implicated in major depressive disorder (MDD), yet the precise cellular and molecular mechanisms remain poorly understood. In this study, we investigated the role of layer V pyramidal neurons in a mouse model of MDD induced by repeated lipopolysaccharide (LPS) administration. Our results demonstrate that three days of systemic LPS administration induced depressive-like behavior and upregulated mRNA levels of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-β (TGF-β) in the IL cortex.

View Article and Find Full Text PDF

Cancer is one of the greatest dangers to human wellbeing and survival. A key barrier to effective cancer therapy is development of resistance to anti‑cancer medications. In cancer cells, the AAA+ ATPase family member thyroid hormone receptor interactor 13 (TRIP13) is key in promoting treatment resistance.

View Article and Find Full Text PDF

The cytochrome P450 proteins (CYP450s) have been implicated in catalyzing numerous important biological reactions and contribute to a variety of diseases. CYP26A1, a member of the CYP450 family, carries out the oxidative metabolism of retinoic acid (RA), the active metabolite of vitamin A. Here we report that CYP26A1 was dramatically upregulated in the spinal cord after spinal nerve ligation (SNL).

View Article and Find Full Text PDF

A11 dopaminergic neurons regulate somatosensory transduction by projecting from the diencephalon to the spinal cord, but the function of this descending projection in itch remained elusive. Here, we report that dopaminergic projection neurons from the A11 nucleus to the spinal dorsal horn (dopaminergic ) are activated by pruritogens. Inhibition of these neurons alleviates itch-induced scratching behaviors.

View Article and Find Full Text PDF

Phosphorylation of the serine 139 of the histone variant H2AX (γH2AX) is a DNA damage marker that regulates DNA damage response and various diseases. However, whether γH2AX is involved in neuropathic pain is still unclear. We found the expression of γH2AX and H2AX decreased in mice dorsal root ganglion (DRG) after spared nerve injury (SNI).

View Article and Find Full Text PDF

Background: Chemokine-mediated neuroinflammation plays an important role in the pathogenesis of neuropathic pain. The chemokine CC motif ligand 7 (CCL7) and its receptor CCR2 have been reported to contribute to neuropathic pain via astrocyte-microglial interaction in the spinal cord. Whether CCL7 in the trigeminal ganglion (TG) involves in trigeminal neuropathic pain and the involved mechanism remain largely unknown.

View Article and Find Full Text PDF

Itch is an uncomfortable and complex sensation that elicits the desire to scratch. The nucleus accumbens (NAc) activity is important in driving sensation, motivation, and emotion. Excitatory afferents from the medial prefrontal cortex (mPFC), amygdala, and hippocampus are crucial in tuning the activity of dopamine receptor D1-expressing and D2-expressing medium spiny neurons (Drd1-MSN and Drd2-MSN) in the NAc.

View Article and Find Full Text PDF

Chronic pain is challenging to treat due to the limited therapeutic options and adverse side-effects of therapies. Astrocytes are the most abundant glial cells in the central nervous system and play important roles in different pathological conditions, including chronic pain. Astrocytes regulate nociceptive synaptic transmission and network function via neuron-glia and glia-glia interactions to exaggerate pain signals under chronic pain conditions.

View Article and Find Full Text PDF

Neuropathic pain is a refractory condition that involves de novo protein synthesis in the nociceptive pathway. The mTOR is a master regulator of protein translation; however, mechanisms underlying its role in neuropathic pain remain elusive. Using the spared nerve injury-induced neuropathic pain model, we found that mTOR was preferentially activated in large-diameter dorsal root ganglion (DRG) neurons and spinal microglia.

View Article and Find Full Text PDF

Peripheral nerve injury-induced spinal microglial proliferation plays a pivotal role in neuropathic pain. So far, key intracellular druggable molecules involved in this process are not identified. The nuclear factor of activated T-cells (NFAT1) is a master regulator of immune cell proliferation.

View Article and Find Full Text PDF

N-methyl-d-aspartate receptors (NMDARs) dysfunction in the nucleus accumbens (NAc) participates in regulating many neurological and psychiatric disorders such as drug addiction, chronic pain, and depression. NMDARs are heterotetrameric complexes generally composed of two NR1 and two NR2 subunits (NR2A, NR2B, NR2C and NR2D). Much attention has been focused on the role of NR2A and NR2B-containing NMDARs in a variety of neurological disorders; however, the function of NR2C/2D subunits at NAc in chronic pain remains unknown.

View Article and Find Full Text PDF

The medium spiny neurons (MSNs) in the nucleus accumbens (NAc) integrate excitatory and inhibitory synaptic inputs and gate motivational and emotional behavior output. Here we report that the relative intensity of excitatory and inhibitory synaptic inputs to MSNs of the NAc shell was decreased in mice with neuropathic pain induced by spinal nerve ligation (SNL). SNL increased the frequency, but not the amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs), and decreased both the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in the MSNs.

View Article and Find Full Text PDF

Tumor necrosis factor receptor-associated factor 6 (TRAF6) has been reported to be expressed in spinal astrocytes and is involved in neuropathic pain. In this study, we investigated the role and mechanism of TRAF6 in complete Freund's adjuvant (CFA)-evoked chronic inflammatory hypersensitivity and the effect of docosahexaenoic acid (DHA) on TRAF6 expression and inflammatory pain. We found that TRAF6 was dominantly increased in microglia at the spinal level after intraplantar injection of CFA.

View Article and Find Full Text PDF

Trigeminal neuropathic pain (TNP) is a significant health problem but the involved mechanism has not been completely elucidated. Toll-like receptors (TLRs) have recently been demonstrated to be expressed in the dorsal root ganglion and involved in chronic pain. Here, we show that TLR8 was persistently increased in the trigeminal ganglion (TG) neurons in model of TNP induced by partial infraorbital nerve ligation (pIONL).

View Article and Find Full Text PDF

Background: Currently, medical treatment of inflammatory pain is limited by a lack of safe and effective therapies. Triptonide (TPN), a major component of . with low toxicity, has been shown to have good anti-inflammatory and neuroprotective effects.

View Article and Find Full Text PDF

Trigeminal nerve injury-induced neuropathic pain is a debilitating chronic orofacial pain syndrome but lacks effective treatment. G protein-coupled receptors (GPCRs), especially orphan GPCRs (oGPCRs) are important therapeutic targets in pain medicine. Here, we screened upregulated oGPCRs in the trigeminal ganglion (TG) after partial infraorbital nerve transection (pIONT) and found that Gpr151 was the most significantly upregulated oGPCRs.

View Article and Find Full Text PDF

Chemokines and receptors have been implicated in the pathogenesis of chronic pain. Here, we report that spinal nerve ligation (SNL) increased CXCR3 expression in dorsal root ganglion (DRG) neurons, and intra-DRG injection of Cxcr3 shRNA attenuated the SNL-induced mechanical allodynia and heat hyperalgesia. SNL also increased the mRNA levels of CXCL9, CXCL10, and CXCL11, whereas only CXCL10 increased the number of action potentials (APs) in DRG neurons.

View Article and Find Full Text PDF