High-power pulse magnetron sputtering is a new type of magnetron sputtering technology that has advantages such as high peak power density and a high ionization rate compared to DC magnetron sputtering. In this paper, we report the effects of different pulse widths on the current waveform and plasma spectrum of target material sputtering, as well as the structure and properties of Cu films prepared under the same sputtering voltage and duty cycle. Extending the pulse width can make the sputtering enter the self-sputtering (SS) stage and improve the ion quantity of sputtered particles.
View Article and Find Full Text PDFIn this paper, Cu thin films were deposited on Si (100) substrates by the high-power impulse magnetron sputtering (HiIPMS) technique, and the effects of different duty cycles (from 2.25% to 5.25%) on the plasma discharge characteristics, microstructure, and electrical properties of Cu thin films were investigated.
View Article and Find Full Text PDFThe natural frequency of coal is one of the important technical parameters for the application of the permeability enhancement technology of coal and rock forced vibration. Aiming at exploring the dominant frequency of the permeability enhancement technology of coal vibration excited by vibration wave, the model of coal vibration excited by simple harmonic wave (SHW) was constructed. Furthermore, considering the three main control parameters, i.
View Article and Find Full Text PDFLiquid nitrogen freezing, which is an effective permeability enhancement technology, has been applied to the extraction of oil, shale gas, and coalbed methane (CBM). This study is aimed at revealing the effect of liquid nitrogen mass transfer on the temperature variation and pore structure evolution within coal. To achieve this aim, first, temperature measurement tests under the action of liquid nitrogen freezing were conducted on saturated and dried coal samples, respectively.
View Article and Find Full Text PDFTo determine the unfrozen water content variation characteristics of coal from the low temperature freezing based on the good linear relationship between the amplitude of the nuclear magnetic resonance (NMR) signal and movable water, pulsed NMR technology was used to test water-saturated coal samples and analyze the relationship between the unfrozen water content, the temperature and pore pressure during freeze-thaw from a microscopic perspective. Experimental results show that the swelling stress of the ice destroys the original pore structure during the freezing process, causing the melting point of the pore ice to change, so the unfrozen water content during the melting process presents a hysteresis phenomenon. When phase equilibrium has been established in the freezing process, the unfrozen water is mainly the film water on the pore surface and pore water in pores with pore radius below 10 nm.
View Article and Find Full Text PDFIndoor localization is a key enabling technology for mobile robot navigation in industrial manufacturing. As a distributed metrology system based on multi-station intersection measurement, the workshop measurement positioning system (wMPS) is gaining increasing attention in mobile robot localization. In this paper, a new, to the best of our knowledge, wMPS-based resection localization method is proposed using a single onmidirectional transmitter mounted on a mobile robot with scanning photoelectric receivers distributed in the work space.
View Article and Find Full Text PDFIn the measurement process of photoelectric scanning measurement network, the laser surface edge area has lower measurement accuracy than the middle area due to the geometrical distortions of the laser surface of the transmitter. This paper presents a sub-regional calibration method that can accomplish error compensation for the measurement system. Unlike the camera sub-regional calibration, the regional division and identification of the laser surface are more difficult.
View Article and Find Full Text PDFLarge-scale measurement plays an increasingly important role in intelligent manufacturing. However, existing instruments have problems with immersive experiences. In this paper, an immersive positioning and measuring method based on augmented reality is introduced.
View Article and Find Full Text PDFRice allelopathy is a hot topic in the field of allelopathy, and behaviour of donor allelopathic rice has been well documented. However, few study addresses response of receiver barnyardgrass (BYG). We found that expression of miRNAs relevant to plant hormone signal transduction, nucleotide excision repair and the peroxisome proliferator-activated receptor and p53 signalling pathways was enhanced in BYG co-cultured with the allelopathic rice cultivar PI312777, the expression levels of these miRNAs in BYG plants were positively correlated with allelopathic potential of the co-cultured rice varieties.
View Article and Find Full Text PDFHigh-speed surface profile measurement with high precision is crucial for target inspection and quality control. In this study, a laser scanner based on a single point laser triangulation displacement sensor and a high-speed rotating polygon mirror is proposed. The autosynchronized scanning scheme is introduced to alleviate the trade-off between the field of view and the range precision, which is the inherent deficiency of the conventional triangulation.
View Article and Find Full Text PDFSensors (Basel)
December 2013
A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace.
View Article and Find Full Text PDFFactor V leiden (FVL) is an abnormality of factor V (FV), a blood coagulation factor. It is a hereditary blood coagulation disorder with a high frequency (3-7% of general population). The most common type of FVL is caused by a single amino acid mutation and, therefore, its diagnosis is currently done only by DNA analysis, which takes a long time and is expensive.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) have been the leading threat to human life. An effective way for sensitive and accurate CVD diagnosis is to measure the biochemical markers released from the damaged myocardial cells in the bloodstream. Here, a multi-analyte, fluorophore mediated, fiber-optic immuno-biosensing system is being developed to simultaneously and rapidly quantify four clinically important cardiac markers, myoglobin, C-reactive protein, cardiac troponin I, and B-type natriuretic peptide.
View Article and Find Full Text PDFFactor V Leiden (FVL) is an abnormality with a single amino acid mutation of Factor V (FV) and is the most common, hereditary blood coagulation disorder. FVL is currently diagnosed by DNA analysis, which takes a long assay time, high cost, and a specially trained person. We are developing a rapid, accurate, and cost-effective biosensing system to quantify both FV and FVL in blood plasma, to diagnose FVL and also to evaluate the seriousness of the disease status.
View Article and Find Full Text PDFCardiovascular disease (CVD) is the leading cause of death in U.S. Early and accurate diagnosis of CVD is crucial to save many lives, especially for the patients suffering the heart attack.
View Article and Find Full Text PDFA prototype of a fiber-optic, multi-analyte, immunobiosensing system was developed to simultaneously quantify disease-representing biomarkers in blood plasma. This system was for simultaneous quantification of two different groups of multi-biomarkers related to cardiovascular diseases (CVD): anticoagulants (protein C, protein S, antithrombin III, and plasminogen) for deficiency diagnosis; and cardiac markers (B-type natriuretic peptide, cardiac troponin I, myoglobin, and C-reactive protein) for coronary heart disease diagnosis. As an initial effort towards the development of a disposable and easy-to-use sensing cartridge as a rapid diagnostic tool for CVD related diseases, a prototype of a flow control system was also developed to automatically perform simultaneous four-analyte quantification.
View Article and Find Full Text PDF