Publications by authors named "Yongjie Jin"

Diabetes nephropathy (DN) is the leading cause of end-stage renal disease (ESRD) worldwide, and podocyte injury is the central contributor to the progression of DN. Despite the emerging evidence that has established the importance of podocyte endoplasmic reticulum (ER) stress in the pathogenesis of DN, abnormal protein O-GlcNAcylation is also augmented. Currently, the mechanism associating these two hyperglycemia-induced disorders remains poorly understood.

View Article and Find Full Text PDF

The increasing load of senescent cells is a source of aging, and chronic inflammation plays a pivotal role in cellular senescence. In addition, senescent renal tubular epithelial cells are closely associated with renal aging. Lysophosphatidic acid (LPA) is a bioactive lipid mainly produced by the catalytic action of autotaxin (ATX), and its ligation to LPA receptor-1 (LPAR1) is associated with chronic inflammation and renal fibrosis; however, its role in renal aging is unclear.

View Article and Find Full Text PDF

A black hole X-ray binary produces hard X-ray radiation from its corona and disk when the accreting matter heats up. During an outburst, the disk and corona co-evolves with each other. However, such an evolution is still unclear in both its geometry and dynamics.

View Article and Find Full Text PDF

A novel biomimetic immuno-magnetosome (IMS) is developed by coating a leukocyte membrane (decorated with anti-epithelial cell-adhesion molecule antibody) on a magnetic nanocluster. In addition to the good stability and magnetic controllability, the IMS also exhibits satisfactory binding avidity to circulating tumor cells but stealth property to leukocytes. As a result, rare tumor cells can be effectively enriched with undetectable leukocyte background.

View Article and Find Full Text PDF

Ru(ii) polypyridyl complexes have been expected as promising therapeutic agents against cancer owing to its DNA photocleavage activity. However, the lack of cell selectivity poses a significant obstacle to their practical application. Herein, the strategy combining cell-specific imaging with photoinduced cell death based on [Ru(phen)2(dppz)](2+) has been developed by incorporating [Ru(phen)2(dppz)](2+) into folate-conjugated liposomes.

View Article and Find Full Text PDF

Background: We investigated the role of the HIPK2-p53 signaling pathway in tumorigenesis and resistance to the drug Verbascoside (VB) in colorectal cancer (CRC), using in vivo and in vitro experiments.

Methods: Primary human CRC samples and normal intestinal tissues from patients were analyzed for HIPK2 expression by immunohistochemistry (IHC) and its expression was correlated against patients' clinicopathological characteristics. Human CRC HCT-116 cells were implanted in BALB/c nude mice; mice with xenografted tumors were randomly administrated vehicle (control), 20, 40, or 80 mg/mL VB, or 1 mg/mL fluorouracil (5-FU).

View Article and Find Full Text PDF

Recently published international guidelines recommend the clinical use of noninvasive prenatal test (NIPT) for aneuploidy screening only among pregnant women whose fetuses are deemed at high risk. The applicability of NIPT to aneuploidy screening among average risk pregnancies requires additional supportive evidence. A key determinant of the reliability of aneuploidy NIPT is the fetal DNA fraction in maternal plasma.

View Article and Find Full Text PDF

The sialic acid (SA)-phenylboronic acid (PBA) recognition system is of particular interest in the bioconjugation field, because it is simple, fast, efficient, and biocompatible. In this paper, we report a novel method for reversibly labeling living virus with quantum dots (QDs) by taking advantage of this SA-PBA recognition system. The QDs were initially modified with PBA (QDs-PBA) to target them to the surface of vesicular stomatitis virus (VSV), which has abundant with SA on its envelope.

View Article and Find Full Text PDF

Massively parallel sequencing of DNA molecules in the plasma of pregnant women has been shown to allow accurate and noninvasive prenatal detection of fetal trisomy 21. However, whether the sequencing approach is as accurate for the noninvasive prenatal diagnosis of trisomy 13 and 18 is unclear due to the lack of data from a large sample set. We studied 392 pregnancies, among which 25 involved a trisomy 13 fetus and 37 involved a trisomy 18 fetus, by massively parallel sequencing.

View Article and Find Full Text PDF

Background: The presence of fetal DNA in maternal plasma represents a source of fetal genetic material for noninvasive prenatal diagnosis; however, the coexisting background maternal DNA complicates the analysis of aneuploidy in such fetal DNA. Recently, the SERPINB5 gene on chromosome 18 was shown to exhibit different DNA-methylation patterns in the placenta and maternal blood cells, and the allelic ratio for placenta-derived hypomethylated SERPINB5 in maternal plasma was further shown to be useful for noninvasive detection of fetal trisomy 18.

Methods: To develop a similar method for the noninvasive detection of trisomy 21, we used methylation-sensitive single nucleotide primer extension and/or bisulfite sequencing to systematically search 114 CpG islands (CGIs)-76% of the 149 CGIs on chromosome 21 identified by bioinformatic criteria-for differentially methylated DNA patterns.

View Article and Find Full Text PDF

Background: The specific detection of a minor population of mutant DNA molecules requires methods of high specificity and sensitivity. While the single-allele base extension reaction (SABER) was shown to be useful for the detection of certain beta-thalassemia mutations, we encountered problems with false positivity during development of SABER for the noninvasive prenatal diagnosis of the hemoglobin E (HbE) disease. Systematic optimization resulted in an alternative protocol, the allele-specific base extension reaction (ASBER).

View Article and Find Full Text PDF

In order to improve the computation speed of ordered subset expectation maximization (OSEM) algorithm for fully 3-D single photon emission computed tomography (SPECT) reconstruction, an experimental beowulf-type cluster was built and several parallel reconstruction schemes were described. We implemented a single-program-multiple-data (SPMD) parallel 3-D OSEM reconstruction algorithm based on message passing interface (MPI) and tested it with combinations of different number of calculating processors and different size of voxel grid in reconstruction (64×64×64 and 128×128×128). Performance of parallelization was evaluated in terms of the speedup factor and parallel efficiency.

View Article and Find Full Text PDF

The SPECT imaging process has two fundamental stages: detection and display. The detection stage can be rigorously quantitatively described by Shannon's information theory. Information is transferred from the source to the detector in the photon emitting process.

View Article and Find Full Text PDF

Current methods for prenatal diagnosis of chromosomal aneuploidies involve the invasive sampling of fetal materials using procedures such as amniocentesis or chorionic villus sampling and constitute a finite risk to the fetus. Here, we outline a strategy for fetal chromosome dosage assessment that can be performed noninvasively through analysis of placental expressed mRNA in maternal plasma. We achieved noninvasive prenatal diagnosis of fetal trisomy 21 by determining the ratio between alleles of a single-nucleotide polymorphism (SNP) in PLAC4 mRNA, which is transcribed from chromosome 21 and expressed by the placenta, in maternal plasma.

View Article and Find Full Text PDF

Two novel genes (tsB, tsC) involved in the conversion of DL-2-amino-Delta2-thiazoline-4-carboxylic acid (DL-ATC) to L-cysteine through S-carbamyl-L-cysteine (L-SCC) pathway were cloned from the genomic DNA library of Pseudomonas sp. TS1138. The recombinant proteins of these two genes were expressed in Escherichia coli BL21, and their enzymatic activity assays were performed in vitro.

View Article and Find Full Text PDF

Background: We have previously developed a test for the diagnosis and prognostic assessment of the severe acute respiratory syndrome (SARS) based on the detection of the SARS-coronavirus RNA in serum by real-time quantitative reverse transcriptase polymerase chain reaction (RT-PCR). In this study, we evaluated the feasibility of automating the serum RNA extraction procedure in order to increase the throughput of the assay.

Methods: An automated nucleic acid extraction platform using the MagNA Pure LC instrument (Roche Diagnostics) was evaluated.

View Article and Find Full Text PDF

Background: The Severe Acute Respiratory Syndrome (SARS) was a newly emerged infectious disease which caused a global epidemic in 2002-2003. Sequence analysis of SARS-coronavirus isolates revealed that specific genotypes predominated at different periods of the epidemic. This information can be used as a footprint for tracing the epidemiology of infections and monitor viral evolution.

View Article and Find Full Text PDF

A new sensitive high performance liquid chromatographic method for the determination of L-cysteine in an enzymatic reaction mixture using ultra violet spectrometric detection was developed. The sample reacted with 5,5'-dithio-bis-nitrobenzoic acid (DTNB) and was analyzed on a Shimadzu VP-ODS column at room temperature, using gradient elution with detection at 330 nm. The L-cysteine chromatographic peak was determined in comparison with derivatives of 2-mercapto ethanol and dithiothreitol.

View Article and Find Full Text PDF