Immunosuppressive tumor-associated macrophages (TAMs) account for a high proportion of the tumor tissue and significantly impede immunoefficacy. Furthermore, the signal regulatory protein α (SIRPα) expressed in TAMs adversely correlates with macrophage activation and phagocytosis, resulting in immunosurveillance escape. To address these difficulties, a mannose-modified, pH-responsive nanoplatform with resiquimod (R848) and 2', 3'-cyclic GMP-AMP (cGAMP) co-encapsulation (named M-PNP@R@C) is designed to polarize TAMs and lower SIRPα expression.
View Article and Find Full Text PDFThe effective repair of large bone defects remains a major challenge due to its limited self-healing capacity. Inspired by the structure and function of the natural periosteum, an electrospun biomimetic periosteum is constructed to programmatically promote bone regeneration using natural bone healing mechanisms. The biomimetic periosteum is composed of a bilayer with an asymmetric structure in which an aligned electrospun poly(ε-caprolactone)/gelatin/deferoxamine (PCL/GEL/DFO) layer mimics the outer fibrous layer of the periosteum, while a random coaxial electrospun PCL/GEL/aspirin (ASP) shell and PCL/silicon nanoparticles (SiNPs) core layer mimics the inner cambial layer.
View Article and Find Full Text PDFHigh reactive oxygen species (ROS) levels in tumor microenvironment (TME) impair both immunogenic cell death (ICD) efficacy and T cell activity. Furthermore, tumor escapes immunosurveillance via programmed death-1/programmed death ligand-1 (PD-L1) signal, and the insufficient intracellular hydrogen peroxide weakens ferroptosis efficacy. To tackle the above issues, a glutathione (GSH)/ROS/pH triple-responsive prodrug nanomedicine that encapsulates FeO nanoparticle via electrostatic interaction is constructed for magnetic resonance imaging (MRI)-guided multi-mode theranostics with chemotherapy/ferroptosis/immunotherapy.
View Article and Find Full Text PDFThe simultaneous regeneration of articular cartilage and subchondral bone is a major challenge. Bioinspired scaffolds with distinct regions resembling stratified anatomical architecture provide a potential strategy for osteochondral defect repair. Here, we report the development of an injectable and bilayered hydrogel scaffold with a strong interface binding force.
View Article and Find Full Text PDFTumor vaccines have been used to treat cancer. How to efficiently induce tumor-associated antigens (TAAs) secretion with host immune system activation is a key issue in achieving high antitumor immunity. Immunogenic cell death (ICD) is a process in which tumor cells upon an external stimulus change from non-immunogenic to immunogenic, leading to enhanced antitumor immune responses.
View Article and Find Full Text PDFChemoimmunotherapy is a promising approach in cancer immunotherapy. However, its therapeutic efficacy is restricted by high reactive oxygen species (ROS) levels, an abundance of cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME) as well as immune checkpoints for escaping immunosurveillance. Herein, a new type of TME and reduction dual-responsive polymersomal prodrug (TRPP) nanoplatform was constructed when the D-peptide antagonist (PPA-1) of programmed death ligand-1 was conjugated onto the surface, and talabostat mesylate (Tab, a fibroblast activation protein inhibitor) was encapsulated in the watery core (PPA-TRPP/Tab).
View Article and Find Full Text PDFAs the first line of host defense against pathogenic infections, innate immunity plays a key role in antitumor immunotherapy. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) pathway has attracted much attention because of the secretion of various proinflammatory cytokines and chemokines. Many STING agonists have been identified and applied into preclinical or clinical trials for cancer immunotherapy.
View Article and Find Full Text PDFA two-stage anaerobic digestion process utilizing food waste was investigated in this study, without any additive and co-digestion. Solid content, temperature and pH value were key controlling factors for hydrolysis, which results the optimized food waste hydrolysate with COD/VS of 2.67.
View Article and Find Full Text PDFAsymmetric multi-layered porous films were prepared by casting inverse emulsion following the breath figure method. The porous morphologies both on the surface and in the bulk of the fabricated film could be dynamically manipulated by tuning the emulsion composition as well as the environmental conditions. The model drug was efficiently loaded into the porous film by direct encapsulation during film fabrication, and remarkable sustained drug release from the porous film for more than 28 days was achieved.
View Article and Find Full Text PDFThe aim of the present study was to determine whether the radical reaction intermediates--reactive oxygen species (ROS) were formed during the laccase-catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) and to quantify tentatively its production with electron spin resonance (ESR) spectrometry. To investigate the activation pathways triggered by laccase, ESR spin-trapping techniques using N-tert-butyl-alpha-phenylnitrone (PBN) as spin trap followed by ethyl acetate extraction were employed to identify and quantify the free radical intermediates. ROS such as the superoxide and hydroxyl radical was detected and quantified in the laccase catalyzed oxidation of wood fibers, suggesting that ROS is the main free radical intermediates for laccase reaction.
View Article and Find Full Text PDFHepatobiliary Pancreat Dis Int
November 2002
Objective: To identify the impact of lamivudine on HBV e antigen (HBeAg) seroconversion and HBV DNA level, and the appearance of Tyr-Met-Asn-Asp (YMDD) resistants.
Methods: Forty-seven hepatitis B patients were treated with oral lamivudine. ALT level and HBeAg were detected in the treatment on the zero, 3rd, 6th and 9th month respectively.