Publications by authors named "Yonghwan Kwon"

Atom transfer radical polymerization (ATRP) with dual photoredox/copper catalysis combines the advantages of photo-ATRP and photoredox-mediated ATRP, utilizing visible light and ensuring broad monomer scope and solvent compatibility while minimizing side reactions. Despite its popularity, challenges include high photocatalyst (PC) loadings (10 to 1000 ppm), requiring additional purification and increasing costs. In this study, we discover a PC that functions at the sub-ppm level for ATRP through mechanism-driven PC design.

View Article and Find Full Text PDF

We present the strategic design of donor-acceptor cyanoarene-based photocatalysts (PCs) aiming to augment beneficial PC degradation for halogen atom transfer (XAT)-induced dehalogenation reactions. Our investigation reveals a competitive nature between the catalytic cycle and the degradation pathway, with the degradation becoming dominant, particularly for less activated alkyl halides. The degradation behavior of PCs significantly impacts the efficiency of the XAT process, leading to exploration into manipulating the degradation behavior in a desirable direction.

View Article and Find Full Text PDF

In developing an organic light-emitting diode (OLED) panel for a foldable smartphone (specifically, a color filter on encapsulation) aimed at reducing power consumption, the use of a new optically clear adhesive (OCA) that blocks UV light was crucial. However, the incorporation of a UV-blocking agent within the OCA presented a challenge, as it restricted the traditional UV-curing methods commonly used in the manufacturing process. Although a visible-light curing technique for producing UV-blocking OCA was proposed, its slow curing speed posed a barrier to commercialization.

View Article and Find Full Text PDF

Light-driven 3D printing is gaining significant attention for its unparalleled build speed and high-resolution in additive manufacturing. However, extending vat photopolymerization to multifunctional, photoresponsive materials poses challenges, such as light attenuation and interference between the photocatalysts (PCs) and photoactive moieties. This study introduces novel visible-light-driven acrylic resins that enable rapid, high-resolution photoactive 3D printing.

View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF) emitters are molecules of interest as homogeneous organic photocatalysts (OPCs) for photoredox chemistry. Here, three classes of OPC candidates are studied in dichloromethane (DCM) or N,N-dimethylformamide (DMF) solutions, using transient absorption spectroscopy and time-resolved fluorescence spectroscopy. These OPCs are benzophenones with either carbazole (2Cz-BP and 2tCz-BP) or phenoxazine/phenothiazine (2PXZ-BP and 2PTZ-BP) appended groups and the dicyanobenzene derivative 4DP-IPN.

View Article and Find Full Text PDF

Cyanoarene-based photocatalysts (PCs) have attracted significant interest owing to their superior catalytic performance for radical anion mediated photoredox catalysis. However, the factors affecting the formation and degradation of cyanoarene-based PC radical anion (PC) are still insufficiently understood. Herein, we therefore investigate the formation and degradation of cyanoarene-based PC under widely-used photoredox-mediated reaction conditions.

View Article and Find Full Text PDF

This case report describes the application of three-dimensional (3D) technologies for the surgical treatment of portosystemic shunt (PSS) with segmental caudal vena cava (CVC) aplasia. Two client-owned dogs were diagnosed with PSS along with segmental CVC aplasia using computed tomography. Through 3D volume and surface rendering, the vascular anatomic anomaly of each patient was identified in detail.

View Article and Find Full Text PDF

Current technological advances in the organic light-emitting diode panel design of foldable smartphones demand advanced adhesives with UV-blocking abilities, beyond their conventional roles of bonding objects and relieving deformation stress. However, optically clear adhesives (OCAs) with UV-blocking ability cannot be prepared using conventional UV-curing methods relying on a photoinitiator. Herein, a new acrylic resin that can be efficiently cured using visible light without oxygen removal is presented, which may be used to develop UV-blocking OCAs for use in current flexible displays.

View Article and Find Full Text PDF
Article Synopsis
  • * The photocatalyst shows an unusual "oxygen-acceleration" effect, enabling the polymerization of various monomers in aqueous conditions, which is different from previous methods that required high costs and complex processes.
  • * This new approach could lead to a broader application of protein-polymer conjugates in biocompatible settings, potentially benefiting various fields, including living cell systems.
View Article and Find Full Text PDF

Remote sensing techniques have been applied to monitor the spatiotemporal variation of harmful algal blooms (HABs) in many inland waters. However, these studies have been limited to monitor the vertical distribution of HABs due to the optical complexity of inland water. Therefore, this study applied a deep neural network model to monitor the vertical distribution of Chlorophyll-a (Chl-a), phycocyanin (PC), and turbidity (Turb) using drone-borne hyperspectral imagery, in-situ measurement, and meteoroidal data.

View Article and Find Full Text PDF

Owing to their excellent properties, such as transparency, resistance to oxidation, and high adhesivity, acrylic pressure-sensitive adhesives (PSAs) are widely used. Recently, solvent-free acrylic PSAs, which are typically prepared via photopolymerization, have attracted increasing attention because of the current strict environmental regulations. UV light is commonly used as an excitation source for photopolymerization, whereas visible light, which is safer for humans, is rarely utilized.

View Article and Find Full Text PDF

This study explores the uncertainties in terrestrial water budget estimation over High Mountain Asia (HMA) using a suite of uncoupled land surface model (LSM) simulations. The uncertainty in the water balance components of precipitation (), evapotranspiration (), runoff(), and terrestrial water storage (TWS) is significantly impacted by the uncertainty in the driving meteorology, with precipitation being the most important boundary condition. Ten gridded precipitation datasets along with a mix of model-, satellite-, and gauge-based products, are evaluated first to assess their suitability for LSM simulations over HMA.

View Article and Find Full Text PDF

Background: The optimal endoscopic screening interval for early gastric cancer (EGC) detection still remains controversial. Thus, we performed this prospective study to clarify the optimal interval between endoscopic examinations for EGC detection.

Methods: A questionnaire survey for penultimate endoscopy and gastric cancer (GC) diagnosis interval was used; the findings were then analyzed.

View Article and Find Full Text PDF

Akabane virus (AKAV), an arthropod-transmitted bunyavirus, is a major cause of congenital abnormalities and encephalomyelitis in ruminants. In 2010, there was a major outbreak of encephalomyelitis in Korea and fifteen AKAV strains, including AKAV-7, were isolated from cows. To identify the neuropathogenicity of AKAV-7, we performed experimental infection of cows.

View Article and Find Full Text PDF

We present an optimization of spot-size converter (SSC) of waveguide photodetector (PD) for small polarization dependent loss (PDL). Beam-propagation method simulation gives responsivity for each polarization and SSC structure. From the calculated responsivity data, optimum structure of SSC is determined that can be implemented with a sufficient process tolerance.

View Article and Find Full Text PDF

We propose and demonstrate the use of subcarrier/polarization-interleaved training symbols for channel estimation and synchronization in polarization-division multiplexed (PDM) coherent optical orthogonal frequency-division multiplexed (CO-OFDM) transmission. The principle, the computational efficiency, and the frequency-offset tolerance of the proposed method are described. We show that the use of subcarrier/polarization interleaving doubles the tolerance to the frequency offset between the transmit laser and the receiver's optical local oscillator as compared to conventional schemes.

View Article and Find Full Text PDF

We study the output characteristics of spot-size converter (SSC) integrated buried heterostructure (BH) laser diode (LD) by forming SSC with wet etching process. SSC-LD shows large chip-to-chip variation in threshold current(Ith) and slope efficiency (eta(slope)) compared to LD without SSC. Ith and eta(slope) are closely related with each other so that the front facet eta(slope) increases while the rear facet eta(slope) decreases with Ith.

View Article and Find Full Text PDF