Publications by authors named "Yonghui He"

The endosperm of cereal grains feeds the entire world as a major food supply; however, little is known about its defence response during endosperm development. The Inducer of CBF Expression 1 (ICE1) is a well-known regulator of cold tolerance in plants. ICE1 has a monocot-specific homologue that is preferentially expressed in cereal endosperms but with an unclear regulatory function.

View Article and Find Full Text PDF

A multicomponent [2+2+1] tandem cyclization of alkynones with amines and water using potassium thiocyanate as electrolyte and raw material to access thiazol-2(3)-ones has been developed. This transformation proceeded smoothly via electrocatalytic oxidative C-H bond thiolation, and nucleophilic cascade cyclization to build the (C-S/C-N) bonds to construct the C-O bond. The reaction avoided using transition metal catalysts or oxidation reagents, making it more sustainable and renewable.

View Article and Find Full Text PDF

A new copper and electrocatalytic synergy strategy for efficiently constructing fused quinazolinones has been developed. In the presence of cupric acetate and oxygen, aryl ketones and 1,2,3,4-tetrahydroisoquinoline can smoothly participate in this transformation, thus providing a variety of substituted quinazolones in an undivided cell. The reaction shows good functional group tolerance and provides universal quinazolinones at a good yield under mild conditions.

View Article and Find Full Text PDF

The utilization of axially chiral biaryl diamines has been widely acknowledged as highly advantageous structures for the advancement of chiral catalysts and ligands. This highlights their extensive range of applications in asymmetric catalysis and synthesis. Herein, we devised a direct arylation reactions of 5-aminopyrazoles with azonaphthalenes, utilizing chiral phosphoric acid as the catalyst.

View Article and Find Full Text PDF

A novel electrocatalytic dimerization of -aminphenols and a hydrogen borrowing-like cascade for synthesizing N-monoalkylated aminophenoxazinones have been developed. This electrocatalytic reaction uses a constant current mode in an undivided cell and is free of metal catalysis, open to the air, and eco-friendly. In particular, this protocol exhibits a wide substrate range and provides versatile N-monoalkylated aminophenoxazinones in medium to good yields.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with no cure except transplantation. Abnormal alveolar epithelial regeneration is a key driver of IPF development. The function of Yes1 Associated Transcriptional Regulator (YAP) in alveolar regeneration and IPF pathogenesis remains elusive.

View Article and Find Full Text PDF

An unprecedented solvent-tuned electrochemical method for selective C(sp)-H bond activation towards the synthesis of C3 functionalized chromone derivatives has been developed. This electrosynthesis protocol provides an efficient and green way to access various C3-functionalized chromones by avoiding traditionally employed transition metals and high temperatures. The swappable chemoselectivity was controlled mainly by altering the solvent and the current.

View Article and Find Full Text PDF

Here we report B(CF)CPA-catalyzed enantioselective aza-Diels-Alder reaction of 3,3-difluoro-2-Aryl-3H-indoles with unactivated dienes to access chiral 10,10-difluoro-tetrahydropyrido[1,2-a]indoles. This protocol allows the formation of pyrazole-based C2-quaternary indolin-3-ones with high enantioselectivities and regioselectivities. Moreover, gram-scale synthesis of the 10,10-difluoro-tetrahydropyrido[1,2-a]indole skeleton was successfully achieved without any reduction in both yield and enantioselectivity.

View Article and Find Full Text PDF

The objective of this study was to evaluate the effects of different levels of glycerol monolaurate (GML) on laying performance, egg quality, antioxidant capacity, intestinal morphology and immune function in late-phase laying hens. A total of 480 Hy-Line Variety Brown hens (age 54 wk) were randomly assigned to 5 treatments: the control group (basal diet) and 4 GML groups (basal diet supplemented with 100, 200, 300, and 400 mg/kg GML). Each treatment consisted of 8 replicates with 12 hens each and the trial lasted for 8 wk.

View Article and Find Full Text PDF

An electrochemical multicomponent [2+2+1] cascade cyclization of enaminones and primary amines towards the synthesis of 4-acylimidazoles has been developed. In an undivided cell, enaminones and primary amines can smoothly participate in this reaction to provide a series of 1,2-disubstituted 4-acylimidazoles at room temperature. The reaction avoids the use of both transition-metal catalysts and oxidation reagents, which makes it more sustainable and renewable.

View Article and Find Full Text PDF

Cyclic electron transport (CET) around photosystem I (PSI) mediated by the NADH dehydrogenase-like (NDH) complex is closely related to plant salt tolerance. However, whether overexpression of a core subunit of the NDH complex affects the photosynthetic electron transport under salt stress is currently unclear. Here, we expressed the NDH complex L subunit (Ndhl) genes ZmNdhl1 and ZmNdhl2 from C plant maize (Zea mays) or OsNdhl from C plant rice (Oryza sativa) using a constitutive promoter in rice.

View Article and Find Full Text PDF

A novel and highly selective electrochemical method for the synthesis of diverse quinazolinone oximes via direct electrooxidation of primary amines/C(sp)-H functionalization of oximes has been developed. The reaction is conducted in an undivided cell under constant current conditions and is oxidant-free, open-air, and eco-friendly. Notably, the protocol shows good functional group tolerance, providing versatile quinazolinone oximes in good yields.

View Article and Find Full Text PDF

The direct functionalization of β-C(sp)-H bonds in enamides has garnered increasing attention within the realm of organic synthesis. However, these remarkable advancements are predominantly dependent on transition metals; limited success has been achieved via organocatalytic catalysis. Herein, we report a CPA-catalyzed β-C(sp)-H functionalization of enamides cascade intramolecular cyclization to synthesize the chiral dihydropyrimido[1,6-]indoles bearing -difluoromethylene.

View Article and Find Full Text PDF

Fluoroalkylated compounds are of high interest in drug discovery and have inspired the evolution of diverse C-F bond activation methodologies. However, the selective activation of polyfluorinated compounds remains challenging. Herein, we describe an unprecedented strategy for synthesizing enantioenriched fluorofuro[3,2-]indolines through the organocatalytic aza-Friedel-Crafts reaction coupled with selective C-F bond activation.

View Article and Find Full Text PDF

In maize (), the disease known as "top rot" causes necrosis of the upper plant, disrupts tassel formation and pollen dispersal, and decreases yield. However, the causal agent, mode of pathogen infestation, and genetic architecture of resistance in maize remain to be explored. Here, to identify the causal agent, we isolated 41 fungal strains from maize plants infected with top rot.

View Article and Find Full Text PDF

A facile enantioselective alkynylation of cyclic ketimines attached to a neutral functional group utilizing the dual Cu(I)-CPA catalysis is described. The strategy of the alkynylation of 2-aryl-3H-indol-3-one directly to chiral propargylic amines containing indolin-3-one moiety in good yields and enantioselectivities. Moreover, gram-scale synthesis of chiral propargylamines based C2-quaternary indolin-3-ones was performed.

View Article and Find Full Text PDF

As a bioactive species with high oxidation capacity, peroxynitrite (ONOO) plays a crucial role in the regulation of diverse pathophysiological processes, and the overproduction of ONOO is closely associated with various physiological diseases such as liver injury, pulmonary fibrosis and so on. Herein, two borate-based fluorescent probes 3a and 3b were synthesized for monitoring ONOO by a simple substitution reaction. The experimental results showed that 3a and 3b had high selectivity and sensitivity for ONOO.

View Article and Find Full Text PDF

The β-C-H functionalization of amines is one of the most powerful tools for the synthesis of saturated nitrogen-containing heterocycles in organic synthesis. However, the β-C-H functionalization of amines redox-neutral addition with cyclic-ketimines is still unprecedented. Herein, the β-C-H functionalization of tertiary amines is described, providing the corresponding 1,3-diamines containing the indolin-3-one moiety in high yields the B(CF)-catalyzed borrowing hydrogen strategy.

View Article and Find Full Text PDF

The enantioselective aza-MBH reaction is an efficient strategy for constructing novel carbon-carbon bonds, providing access to multitudinous chiral densely functionalized MBH products. However, the enantioselective aza-MBH reaction of cyclic-ketimines that would generate a versatile synthon is still missing and challenging. Herein, we developed a challenging direct organocatalytic asymmetric aza-MBH reaction involving cyclic ketimines attached to a neutral functional group.

View Article and Find Full Text PDF

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the rate-limiting enzyme for photosynthesis. Rubisco activase (RCA) can regulate the Rubisco activation state, influencing Rubisco activity and photosynthetic rate. We obtained transgenic maize plants that overproduced rice () and evaluated photosynthesis in these plants by measuring gas exchange, energy conversion efficiencies in photosystem (PS) I and PSII, and Rubisco activity and activation state.

View Article and Find Full Text PDF

Because rare-earth elements are scarce, expensive, and unsustainable, it is of great significance to develop rare-earth-free (even metal-free) luminescent materials as phosphors for LEDs. Here, a graphitic-CN (g-CN) derivative containing some heptazines merged with phenyls has been synthesized thermal polymerization of melamine and quinazoline-2,4(1,3)-dione at an optimal mole ratio of 18 : 1. In comparison with g-CN synthesized from melamine only, the photoluminescent (PL) emission colour changed from blue to green, the maximum emission wavelength ( ) changed from 467 nm to 508 nm, and the PL quantum yield (PLQY) increased from 8.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) continues to pose serious threats to pediatric populations due to the lack of a vaccine and effective antiviral drugs. RSV fusion (F) glycoprotein mediates viral-host membrane fusion and is a key target for neutralizing antibodies. We generated 23 full-human monoclonal antibodies (hmAbs) against prefusion F protein (pre-F) from a healthy adult with natural RSV infection by single B cell cloning technique.

View Article and Find Full Text PDF
Article Synopsis
  • A chiral phosphoric acid catalyst is used to facilitate an enantioselective aza-Friedel-Crafts reaction between 5-aminopyrazole derivatives and cyclic ketimines.
  • This process results in the production of pyrazole-derived C2-quaternary indolin-3-ones with both high enantioselectivity and regioselectivity.
  • The reaction can be scaled up to gram quantities without losing yield or enantioselectivity, demonstrating its practical application.
View Article and Find Full Text PDF

The enantioselective aza-Friedel-Crafts reaction is one of the most straightforward and efficient strategies for constructing a new carbon-carbon bond bearing quaternary stereocenter in organic synthesis, but the catalytic asymmetric aza-Friedel-Crafts reaction of naphthols/phenols with cyclic-ketimines attached to a neutral functional group remains still relatively unexplored. Herein, a highly enantioselective aza-Friedel-Crafts reaction of cyclic-ketimines and naphthols/phenols has been realized using a chiral phosphoric acid catalyst. A variety of chiral aminonaphthols (chiral indolin-3-ones) containing a quaternary stereocenter at the C2 position were obtained with excellent outcomes (up to 97% yield, 98% ee).

View Article and Find Full Text PDF

Postoperative infected wound complications caused by residual tumor cells, bacterial biofilms, and drug-resistant bacteria have become the main challenge in postsurgical skin regeneration. Herein, a bionic cellulose nanocrystal (CNC)-based intelligent wound dressing with near-infrared (NIR)-, temperature-, and pH-responsive functions was designed by using NIR-responsive CNC as the network skeleton, dynamic imine bonds between dialdehyde cellulose nanocrystals and doxorubicin, chitosan oligosaccharide as the pH-responsive switch, and temperature-sensitive poly(-isopropyl acrylamide) as the temperature-responsive formation switch. The as-prepared wound dressing with the intertwining three-dimensional (3D) network structure possessed high drug loadability of indocyanine green (30 mg/g) and doxorubicin (420 mg/g) simultaneously.

View Article and Find Full Text PDF