Publications by authors named "Yonghua Taylor Zhang"

Fc galactosylation is a critical quality attribute for anti-tumor recombinant immunoglobulin G (IgG)-based monoclonal antibody (mAb) therapeutics with complement-dependent cytotoxicity (CDC) as the mechanism of action. Although the correlation between galactosylation and CDC has been known, the underlying structure-function relationship is unclear. Heterogeneity of the Fc N-glycosylation produced by Chinese hamster ovary (CHO) cell culture biomanufacturing process leads to variable CDC potency.

View Article and Find Full Text PDF

Free thiols, or unpaired cysteines, are important product quality attributes in the therapeutic proteins due to their potential impact on the protein structure, bioactivity and stability. While many free thiol quantitation methods were developed for specific therapeutic formats, an unmet need still exists for a multiproduct, high-throughput method for free thiol quantitation. In this study, a workflow was established that combines N-cyclohexylmaleimide (NcHM) derivatization and high-throughput reversed-phase ultra-high performance liquid chromatography (RP-UHPLC) separation with superficially porous particle (SPP) column for quantitating total free thiols in monoclonal antibodies (mAbs), fragment antigen-binding (Fab), and bispecific antibodies (BsAbs).

View Article and Find Full Text PDF

Conventionally, hydrophobic interaction chromatography (HIC) uses mobile phases with high salt concentration that are not compatible with mass spectrometry (MS). Here we describe development of an HIC method coupled with MS detection (HIC-MS) utilizing an aqueous mobile phase with a low concentration of a volatile salt for characterizing recombinant monoclonal antibody (mAb) post-translational modifications (PTMs). The ability of HIC to separate the oxidation and free thiol variants of the mAbs enables their isolation and rapid characterization of these attributes under native conditions, an important step toward understanding the role they play.

View Article and Find Full Text PDF

Reversed-phase liquid chromatography (RPLC) has been commonly used in IgG2 disulfide isoforms analysis. Recently, the columns packed with large pore superficially porous particles (SPP) have become available commercially. This work explores the application of this SPP technology in IgG2 disulfide isoforms separation.

View Article and Find Full Text PDF

Glycation is an important protein modification that could potentially affect bioactivity and molecular stability, and glycation of therapeutic proteins such as monoclonal antibodies should be well characterized. Glycated protein could undergo further degradation into advance glycation end (AGE) products. Here, we review the root cause of glycation during the manufacturing, storage and in vivo circulation of therapeutic antibodies, and the current analytical methods used to detect and characterize glycation and AGEs, including boronate affinity chromatography, charge-based methods, liquid chromatography-mass spectrometry and colorimetric assay.

View Article and Find Full Text PDF

Measurement of free thiols in antibody therapeutics is important for product development and assessment of critical quality attributes. Earlier studies demonstrated fast separation of free thiol variants of IgG1 using reversed-phase high performance liquid chromatography (RP-HPLC) with diphenyl resin. Here, we report using N-tert-butylmaleimide (NtBM) alkylation followed by RP-HPLC and online mass spectrometry for rapid total and domain-specific free thiol characterization of IgG1.

View Article and Find Full Text PDF

Chemical or enzymatic modifications of therapeutic monoclonal antibodies (MAbs) that have high risk to safety and efficacy are defined as critical quality attributes (CQAs). During therapeutic MAbs process development, thorough characterization and quantitative monitoring of CQAs requires a variety of analytical techniques. This paper describes the development of a rapid analytical method to assess modifications in MAbs, based on the analysis of subdomains with molecular weights of ∼25kDa.

View Article and Find Full Text PDF

RP-HPLC has been demonstrated as a powerful tool to study antibody free thiol and disulfide variants. Recently, the introduction of UHPLC columns with wide pore size (300Å) and small particle size (1.7μm) offered the opportunity to further improve the separation of such variants.

View Article and Find Full Text PDF

Size-exclusion chromatography (SEC) is an important mode of separation used in monoclonal antibody (mAb) characterization and quality control. SEC separates mAbs into three major species: high molecular weight species, main peak (predominantly monomer), and low molecular weight species. However, mAb SEC separations have low resolution between the different sized species, and the analysis is slow with low sample throughput.

View Article and Find Full Text PDF

Deamidation is one of the most common degradation pathways for proteins and frequently occurs at "hot spots" with Asn-Gly, Asn-Ser or Asn-Thr sequences. Occasionally, deamidation may occur at other motifs if the local protein structure can participate or assist in the formation of the succinimide intermediate. Here we report the use of a chymotryptic peptide mapping method to identify and characterize a deamidated form of an IgG1 which was observed as an acidic peak in the cation exchange chromatography (CEX).

View Article and Find Full Text PDF

The deamidation of asparagine into aspartate and isoaspartate moieties is a major pathway for the chemical degradation of monoclonal antibodies (mAbs). It can affect the shelf life of a therapeutic antibody that is not formulated or stored appropriately. A new approach to detect deamidation using ion exchange chromatography was developed that separates papain-digested mAbs into Fc and Fab fragments.

View Article and Find Full Text PDF