Publications by authors named "Yonghong Zeng"

Retinomorphic systems that can see, recognize, and respond to real-time environmental information will extend the complexity and range of tasks that an exoskeleton robot can perform to better assist physically disabled people. However, the lack of ultrasensitive, reconfigurable, and large-scale integratable retinomorphic devices and advanced edge-processing algorithms makes it difficult to realize retinomorphic hardware. Here, we report the retinomorphic hardware prototype with a 4096-pixel perovskite image sensor array as core module to endow embodied intelligent vision functionalities.

View Article and Find Full Text PDF

Teaching for creativity (TfC) has recently received increased attention in English-as-a-foreign-language (EFL) contexts. Previous studies confirmed that TfC links with achievement emotions (AEs) in this context. Additionally, a supportive work environment (SWE) has been shown to be associated with AEs.

View Article and Find Full Text PDF

The positive impact of Artificial Intelligence (AI) on second language (L2) learning is well-documented. An individual's attitude toward AI significantly influences its adoption. Despite this, no specific scale has been designed to measure this attitude, particularly in the Chinese context.

View Article and Find Full Text PDF

Second language (L2) teachers' emotions can influence their well-being and students' performance. However, most of the existing studies have focused on the role of individual factors in affecting L2 teachers' emotions, while leaving environmental factors underexplored. To fill this gap, this study aimed to examine how the four dimensions of a supportive work environment (SWE) (perceived climate, PC; supervisory relationship, SR; peer group interaction, PGI; and perceived organization support, POS) relate to L2 teachers' emotions (enjoyment, anxiety, pride, and anger).

View Article and Find Full Text PDF

Burnout impairs English as a foreign language (EFL) learning, while engagement enhances it. However, most relevant studies have focused on college students, neglecting senior high school students. To address this gap, this mixed-methods study used two scales to assess the levels of burnout and engagement among 1234 Chinese senior high school EFL students.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) as a replaceable energy storage technology have attracted extensive attention in recent years. The design and preparation of advanced anode materials with high capacity and excellent cycling performance for SIBs still face enormous challenges. Herein, a solution method is developed for in situ synthesis of anti-aggregation tellurium nanorods/reduced graphene oxide (Te NR/rGO) composite.

View Article and Find Full Text PDF

We proposed two methods for the localization of drone controllers based on received signal strength indicator (RSSI) ratios: the RSSI ratio fingerprint method and the model-based RSSI ratio algorithm. To evaluate the performance of our proposed algorithms, we conducted both simulations and field trials. The simulation results show that our two proposed RSSI-ratio-based localization methods outperformed the distance mapping algorithm proposed in literature when tested in a WLAN channel.

View Article and Find Full Text PDF

Type II vertical heterojunction is a good solution for long-wavelength light detection. Here, we report a rhenium selenide/molybdenum telluride (n-ReSe/p-MoTe) photodetector for high-performance photodetection in the broadband spectral range of 405-2000 nm. Due to the low Schottky barrier contact of the ReSe/MoTe heterojunction, the rectification ratio (RR) of ~10 at ±5 V is realized.

View Article and Find Full Text PDF

Since atomically thin two-dimensional (2D) graphene was successfully synthesized in 2004, it has garnered considerable interest due to its advanced properties. However, the weak optical absorption and zero bandgap strictly limit its further development in optoelectronic applications. In this regard, other 2D materials, including black phosphorus (BP), transition metal dichalcogenides (TMDCs), 2D Te nanoflakes, and so forth, possess advantage properties, such as tunable bandgap, high carrier mobility, ultra-broadband optical absorption, and response, enable 2D materials to hold great potential for next-generation optoelectronic devices, in particular, mid-infrared (MIR) band, which has attracted much attention due to its intensive applications, such as target acquisition, remote sensing, optical communication, and night vision.

View Article and Find Full Text PDF

Two-dimensional black phosphorus (BP) has triggered tremendous research interest owing to its unique crystal structure, high carrier mobility, and tunable direct bandgap. Preparation of few-layer BP with high quality and stability is very important for its related research and applications in biomedicine, electronics, and optoelectronics. In this review, the synthesis methods of BP, including the preparation of bulk BP crystal which is an important raw material for preparing few-layer BP, the popular top-down methods, and some direct growth strategies of few-layer BP are comprehensively overviewed.

View Article and Find Full Text PDF

Great success in 2D van der Waals (vdW) heterostructures based photodetectors is obtained owing to the unique electronic and optoelectronic properties of 2D materials. Performance of photodetectors based 2D vdW heterojunctions at atomic scale is more sensitive to the nanointerface of the heterojunction than conventional bulk heterojunction. Here, a nanoengineered heterostructure for the first-time demonstration of a nanointerface using an inserted graphene layer between black phosphorus (BP) and InSe which inhibits interlayer recombination and greatly improves photodetection performances is presented.

View Article and Find Full Text PDF

Tellurene is a new-emerging two-dimensional anisotropic semiconductor, with fascinating electric and optical properties that differ dramatically from the bulk counterpart. In this work, the layer dependent electronic and optical properties of few-layer Tellurene has been calculated with the density functional theory (DFT). It shows that the band gap of the Tellurene changes from direct to indirect when layer number changes from monolayer (1 L) to few-layers (2 L-6 L) due to structural reconstruction.

View Article and Find Full Text PDF

Although peroxisome proliferator-activated receptor (PPAR)-α has been reported to be involved in preventing acute lung injury (ALI), the molecular regulation of post‑ALI lung recovery remains to be fully elucidated. The aim of the present study was to characterize the mechanism by which PPAR‑α prevents ALI and examine the role of PPAR‑α in the recovery of lung function following acute respiratory distress syndrome (ARDS). Reverse transcription‑quantitative‑polymerase chain reaction and western blot analyses suggested that PPAR‑α was effective in suppressing transforming growth factor (TGF)‑β1 in HLF cells and RAW 264.

View Article and Find Full Text PDF

We present a Monte Carlo simulation and experimental study of ammonia adsorption on graphitized thermal carbon black. Our new molecular model for the adsorbent is composed of basal plane graphene surfaces with ultrafine pores grafted with hydroxyl groups at the junctions between graphene layers. The simulated adsorption isotherms and isosteric heats are in good agreement with the experimental data of Holmes and Beebe, and the simulations reproduce the unusual experimental hysteresis of ammonia adsorption on an open graphite surface for the first time in the literature.

View Article and Find Full Text PDF

Adsorption of different gases on graphitized thermal carbon black (GTCB) has been studied with a new molecular model to examine the consequences of micropore crevices and functional groups at the junctions between adjacent basal planes. Adsorption was simulated in the Grand Canonical Monte Carlo ensemble and the theoretical Henry constants were calculated by Monte Carlo volume integration over the Boltzmann factor of the solid-fluid potential. The simulation results are in good agreement with high-resolution experimental isotherms for argon on mineralogical graphite measured by Lopez-Gonzalez et al.

View Article and Find Full Text PDF

We analyse in detail our experimental data, our simulation results and data from the literature, for the adsorption of argon, nitrogen, carbon dioxide, methanol, ammonia and water on graphitized carbon black (GTCB), and show that there are two mechanisms of adsorption at play, and that their interplay governs how different gases adsorb on the surface by either: (1) molecular layering on the basal plane or (2) clustering around very strong sites on the adsorbent whose affinity is much greater than that of the basal plane or the functional groups. Depending on the concentration of the very strong sites or the functional groups, the temperature and the relative strength of the three interactions, (a) fluid-strong sites (fine crevices and functional group) (F-SS), (b) fluid-basal plane (FB) and (c) fluid-fluid (FF), the uptake of adsorbate tends to be dominated by one mechanism. However, there are conditions (temperature and adsorbate) where two mechanisms can both govern the uptake.

View Article and Find Full Text PDF

Isosteric heat of adsorption is indispensable in probing the energetic behavior of interaction between adsorbate and solid, and it can shed insight into how molecules interact with a solid by studying the dependence of isosteric heat on loading. In this study, we illustrated how this can be used to explain the difference between adsorption of non-polar (and weakly polar) fluids and strong polar fluids on a highly graphitized carbon black, Carbopack F. This carbon black has a very small quantity of functional group, and interestingly we showed that no matter how small it is the analysis of the isosteric heat versus loading can identify its presence and how it affects the way polar molecules adsorb.

View Article and Find Full Text PDF

A new theory of condensation in an open end slit pore, based on the concept of temperature dependent undulation, at the interface separating the adsorbed phase and the gas-like region, is presented. The theory, describes, for the first time, the microscopic origin of the critical hysteresis temperature and the critical hysteresis pore size, properties which are not accessible to any classical theories.

View Article and Find Full Text PDF

Rapid and highly efficient side-chain functionalization of polypeptides was achieved via combination of ring-opening polymerization of a new clickable monomer of γ-propargyl-L-glutamate N-carboxyanhydride (PLG-NCA) and thiol-yne photochemistry, which provides a convenient and universal route to prepare diverse polypeptide-based biomimetic hybrid materials.

View Article and Find Full Text PDF