Publications by authors named "Yonghe Ma"

Background & Aims: Unlike protein-coding genes, the majority of human long non-coding RNAs (lncRNAs) lack conservation based on their sequences, posing a challenge for investigating their role in a pathophysiological context for clinical translation. This study explores the hypothesis that non-conserved lncRNAs in human and mouse livers may share similar metabolic functions, giving rise to functionally conserved lncRNA metabolic regulators (fcLMRs).

Methods: We developed a sequence-independent strategy to select putative fcLMRs, and performed extensive analysis to determine the functional similarities of putative human and mouse LMR pairs (h/mLMRs).

View Article and Find Full Text PDF

Fibrotic liver features excessive deposition of extracellular matrix (ECM), primarily produced from "activated" hepatic stellate cells (HSCs). While targeting human HSCs (hHSCs) in fibrosis therapeutics shows promise, the overall understanding of hHSC activation remains limited, in part because it is very challenging to define the role of human long non-coding RNAs (lncRNAs) in hHSC activation. To address this challenge, we identified another cell type that acts via a diverse gene network to promote fibrogenesis.

View Article and Find Full Text PDF

Background & Aims: The human liver transcriptome is complex and highly dynamic, e.g. one gene may produce multiple distinct transcripts, each with distinct posttranscriptional modifications.

View Article and Find Full Text PDF

In contrast to humans or rabbits, in which maternal IgG is transmitted to offspring prenatally via the placenta or the yolk sac, large domestic animals such as pigs, cows and sheep transmit IgG exclusively through colostrum feeding after delivery. The extremely high IgG content in colostrum is absorbed by newborns via the small intestine. Although it is widely accepted that the neonatal Fc receptor, FcRn, is the receptor mediating IgG transfer across both the placenta and small intestine, it remains unclear whether FcRn also mediates serum IgG transfer across the mammary barrier to colostrum/milk, especially in large domestic animals.

View Article and Find Full Text PDF

Dietary supplementation is a widely adapted strategy to maintain nutritional balance for improving health and preventing chronic diseases. Conflicting results in studies of similar design, however, suggest that there is substantial heterogenicity in individuals' responses to nutrients, and personalized nutrition is required to achieve the maximum benefit of dietary supplementation. In recent years, nutrigenomics studies have been increasingly utilized to characterize the detailed genomic response to a specific nutrient, but it remains a daunting task to define the signatures responsible for interindividual variations to dietary supplements for tissues with limited accessibility.

View Article and Find Full Text PDF

Bile acids, regarded as the body's detergent for digesting lipids, also function as critical signaling molecules that regulate cholesterol and triglyceride levels in the body. Bile acids are the natural ligands of the nuclear receptor, FXR, which controls an intricate network of cellular pathways to maintain metabolic homeostasis. In recent years, growing evidence supports that many cellular actions of the bile acid/FXR pathway are mediated by long non-coding RNAs (lncRNAs), and lncRNAs are in turn powerful regulators of bile acid levels and FXR activities.

View Article and Find Full Text PDF

LncRNAs (long noncoding RNAs) are transcripts that are at least 200 nucleotides long and lack any predicted coding potential. Whereas significant progress has been made in deciphering the function of mouse lncRNAs, critical gaps remain in understanding how human lncRNAs exercise their function in a physiological context. As most human lncRNAs are currently considered nonconserved and often do not have homologs in mouse, the technical bottleneck is the lack of a suitable model to study the physiological function.

View Article and Find Full Text PDF

Mouse is the most widely used animal model in biomedical research, but it remains unknown what causes the large number of differentially regulated genes between human and mouse livers identified in recent years. In this report, we aim to determine whether these divergent gene regulations are primarily caused by environmental factors or some of them are the result of cell-autonomous differences in gene regulation in human and mouse liver cells. The latter scenario would suggest that many human genes are subject to human-specific regulation and can only be adequately studied in a human or humanized system.

View Article and Find Full Text PDF

A growing number of long noncoding RNAs (lncRNAs) have emerged as vital metabolic regulators. However, most human lncRNAs are nonconserved and highly tissue specific, vastly limiting our ability to identify human lncRNA metabolic regulators (hLMRs). In this study, we established a pipeline to identify putative hLMRs that are metabolically sensitive, disease relevant, and population applicable.

View Article and Find Full Text PDF

Unlike protein-coding genes, the majority of human long non-coding RNAs (lncRNAs) are considered non-conserved. Although lncRNAs have been shown to function in diverse pathophysiological processes in mice, it remains largely unknown whether human lncRNAs have such in vivo functions. Here, we describe an integrated pipeline to define the in vivo function of non-conserved human lncRNAs.

View Article and Find Full Text PDF

Nano-antibodies possess great potential in many applications. However, they are naturally derived from heavy chain-only antibodies (HcAbs), which lack light chains and the CH1 domain, and are only found in camelids and sharks. In this study, we investigated whether the precise genetic removal of the CH1 exon of the γ1 gene enabled the production of a functional heavy chain-only IgG1 in mice.

View Article and Find Full Text PDF

All jawed vertebrates have four T cell receptor (TCR) chains that are expressed by thymus-derived lymphocytes and play a major role in animal immune defence. However, few studies have investigated the TCR chains of crocodilians compared with those of birds and mammals, despite their key evolutionary position linking amphibians, reptiles, birds and mammals. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization, evolution and expression of TRB and TRG loci in Alligator sinensis.

View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) is involved in IgG metabolism and transport in placental mammals. However, whether FcRn is responsible for IgG transfer from maternal serum to colostrum/milk is controversial. Interestingly, large domestic animals, such as cows, pigs, sheep, and horses, in which passive IgG transfer is exclusively completed via colostrum/milk, all express an FcRn α-chain that is shorter in the cytoplasmic tail (CYT) than its counterparts in humans and rodents.

View Article and Find Full Text PDF

Recently, many immune-related genes have been extensively studied in ducks, but relatively little is known about their TCR genes. Here, we determined the germline and expressed repertoire of TCR genes in White Peking duck. The genomic organization of the duck TCRα/δ, TCRγ and unconventional TCRδ2 loci are highly conserved with their counterparts in mammals or chickens.

View Article and Find Full Text PDF

Nerve growth factor promotes the survival and differentiation of nervous cells and is thought to play an important role in the development of reproductive tissues. The aims of this work were to detect the presence of NGF and its receptor NTRK1 in bovine oviduct samples, and to investigate the regulatory interactions between NGF/NTRK1 and gonadotrophins in bovine oviduct epithelial cells. Both transcripts and proteins of NGF and NTRK1 were detected by RT-PCR and Western blotting, and the corresponding proteins were specifically immunolocalized in oviduct epithelial cells.

View Article and Find Full Text PDF

The expression and localization of neurotrophin 4 (NT4) and its receptor, tyrosine kinase B (TRKB), in the bovine oviduct, and their interaction with gonadotrophins in bovine oviduct epithelial cells (BOECs), were examined. Transcripts for NT4 and TRKB were detected by reverse transcription polymerase chain reaction (RT-PCR) in bovine oviducts in the follicular and luteal phases, and their proteins were immunolocalized in BOECs. Based on real time PCR, NT4 mRNA did not differ significantly between the two phases of the cycle, although TRKB mRNA expression was higher (P < 0.

View Article and Find Full Text PDF

1. The goose major histocompatibility complex (MHC) class IIB cDNA (Ancy-MHCII) was cloned by homology cloning and rapid amplification of cDNA ends by polymerase chain reaction (RACE-PCR), and the genomic structure and tissue expression were investigated. 2.

View Article and Find Full Text PDF

The causative agent of porcine reproductive and respiratory syndrome (PRRS) is PRRS virus (PRRSV), which belongs to the family Arteriviridae. GP5/M protein complex of PRRSV binds to sialoadhesion expressed on the cells to infect the cells. In this study, we developed a canine adenovirus type 2 (CAV-2) recombinant, termed rCAV2-GP5/M, expressing GP5 and M proteins.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsgte00ait20r07skrabisn2kru9o01q4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once