Publications by authors named "Yonghao Zhu"

Current research has found that adipose tissue is not only involved in energy metabolism, but also a highly active endocrine organ that secretes various adipokines, including adiponectin, leptin, resistin and apelin, which are involved in the regulation of physiology and pathology of tissues and organs throughout the body. With the yearly increasing incidence, obesity has become a risk factor for a variety of pathological changes, including inflammation and metabolic syndrome in various system (endocrine, circulatory, locomotor and central nervous system). Thus these symptoms lead to multi-organ dysfunctions, including the heart, liver, kidneys, brain and joints.

View Article and Find Full Text PDF

Topoisomerase IIα (TOP2A) is a crucial enzyme that plays a vital role in DNA replication and transcription mechanisms. Dysregulated expression of TOP2A has been associated with various malignancies, including hepatocellular carcinoma, prostate cancer, colon cancer, lung cancer and breast cancer. In this review, we summarized the prognostic relevances of TOP2A in various types of cancer.

View Article and Find Full Text PDF

The World Health Organization states that early diagnosis is essential to increasing the cure rate for breast cancer, which poses a danger to women's health worldwide. However, the efficacy and cost limitations of conventional diagnostic techniques increase the possibility of misdiagnosis. In this work, we present a quantum hybrid classical convolutional neural network (QCCNN) based breast cancer diagnosis approach with the goal of utilizing quantum computing's high-dimensional data processing power and parallelism to increase diagnosis efficiency and accuracy.

View Article and Find Full Text PDF

As BAG family members, Bcl-2 associated athanogene family protein 1 (BAG1) and 2 (BAG2) are implicated in multiple cellular processes, including apoptosis, autophagy, protein folding and homeostasis. Although structurally similar, they considerably differ in many ways. Unlike BAG2, BAG1 has four isoforms (BAG1L, BAG1M, BAG1S and BAG1 p29) displaying different expression features and functional patterns.

View Article and Find Full Text PDF

In the pigeon industry, treating and preventing diarrhea is vital because it is a serious health problem for pigeons. This study investigated the incidence of diarrhea in 3 pigeon farms in Shanghai, and analyzed the microflora through 16S rDNA high-throughput sequencing. Four strains of Escherichia coli (E.

View Article and Find Full Text PDF

The rapid development and extensive application of the Internet of Things (IoT) have brought new challenges and opportunities to the field of communication. By integrating quantum secure communication with the IoT, we can provide a higher level of security and privacy protection to counteract security threats in the IoT. In this paper, a hybrid quantum communication scheme using six-qubit entangled states as a channel is proposed for specific IoT application scenarios.

View Article and Find Full Text PDF

By stacking monolayer black phosphorus (MBP) with nonpolarized and ferroelectric polarized bilayer hexagonal boron nitride (h-BN), we demonstrate that ferroelectric proximity effects have a strong influence on the charge carrier lifetime of MBP using nonadiabatic (NA) molecular dynamics simulations. Through enhancing the motion of phosphorus atoms, ferroelectric polarization enhances the overlap of electron-hole wave functions that improves NA coupling and decreases the bandgap, resulting in a rapid electron-hole recombination completing within a quarter of nanoseconds, which is two times shorter than that in nonpolarized stackings. In addition to the dominant in-plane A mode in free-standing MBP, the out-of-plane high-frequency A and low-frequency interlayer breathing modes presented in the heterojunctions drive the recombination.

View Article and Find Full Text PDF

With the continuous development of the Internet of Things (IoT) technology, the industry's awareness of the security of the IoT is also increasing, and the adoption of quantum communication technology can significantly improve the communication security of various devices in the IoT. This paper proposes a scheme of controlled remote quantum state preparation and quantum teleportation based on multiple communication parties, and a nine-qubit entanglement channel is used to achieve secure communication of multiple devices in the IoT. The channel preparation, measurement operation, and unitary operation of the scheme were successfully simulated on the IBM Quantum platform, and the entanglement degree and reliability of the channel were verified through 8192 shots.

View Article and Find Full Text PDF

A twist angle at a van der Waals junction provides a handle to tune its optoelectronic properties for a variety of applications, and a comprehensive understanding of how the twist modulates electronic structure, interlayer coupling, and carrier dynamics is needed. We employ time-dependent density functional theory and nonadiabatic molecular dynamics to elucidate angle-dependent intervalley carrier transfer and recombination in bilayer WS. Repulsion between S atoms in twisted configurations weakens interlayer coupling, increases the interlayer distance, and softens layer breathing modes.

View Article and Find Full Text PDF

Crystal coating is an important process in laser crystal applications. According to the crystal characteristics of neodymium-doped yttrium vanadate (Nd:YVO), its intrinsic parameters, and optical film design theory, TaO and SiO were selected separately as high and low refractive index materials. The optical properties and surface roughness of the films were characterized by OptiLayer and Zygo interferometers, and the effects of ion source bias on refractive index and surface roughness were investigated so that the optimal ion source parameters were determined.

View Article and Find Full Text PDF

Polarons play a major role in determining the chemical properties of transition-metal oxides. Recent experiments show that adsorbates can attract inner polarons to surface sites. These findings require an atomistic understanding of the adsorbate influence on polaron dynamics and lifetime.

View Article and Find Full Text PDF

A comprehensive study was conducted on the characteristics of oxygen-controlled carbonization process of sewage sludge (SS) using thermogravimetric analysis and lab-scale carbonization experiment. Reaction temperature of SS carbonization was varied between 250 and 650 °C in carrier gas with different O contents. The thermal process of SS in low oxygen could be divided into three stages: dehydration (below 160 °C), devolatilization (160-380 °C), stubborn volatile decomposition and fixed carbon combustion (380-600 °C).

View Article and Find Full Text PDF

The nonadiabatic (NA) process is crucial to photochemistry and photophysics and requires an atomistic understanding. However, conventional NA molecular dynamics (MD) for condensed-phase materials on the nanoscale are generally limited to the semilocal exchange-correlation functional, which suffers from the bandgap and thus NA coupling (NAC) problems. We consider TiO and a black phosphorus monolayer as two prototypical systems, perform NA-MD simulations of nonradiative electron-hole recombination, and demonstrate for the first time that density functional theory (DFT) half-electron self-energy correction can reproduce the bandgap, effective masses of carriers, luminescence line widths, NAC, and excited-state lifetimes of the two systems at the hybrid functional level while the computational cost remains at that of the Predew-Burke-Ernzerhof functional.

View Article and Find Full Text PDF

Metal halide perovskites are promising materials for photovoltaics and optoelectronics. However, transfer of an electron from perovskite to oxygen leads to the formation of superoxide that significantly decreases the stability and charge carrier lifetime of perovskites, which constitutes major issues for real applications. Using nonadiabatic (NA) molecule dynamics simulations, we demonstrate that the introduction of a perylene diimide (PDI) molecule into the CHNHPbI system adsorbed with an oxygen molecule creates a midgap state above the trap state generated by the oxygen molecule, and thus the PDI midgap state can rapidly capture the photogenerated electron of perovskite at about 100 ps prior to the O-related trap state, which takes about double the time.

View Article and Find Full Text PDF

Bottom ash contains unfavorable contaminants that could leach into the circulating water used for wet treatment, and its improper disposal of bottom ash could cause ecological pollution. This study was to discuss the partition of heavy metals and salts of bottom ash into circulating water and ash stockpile runoff in wet treatment plants in southern China. The leachability of bottom ash before and after the wet treatment was also investigated.

View Article and Find Full Text PDF

Proton exchange fuel cells (PEFCs) are one of the most popular and promising energy conversion devices because of their highly stable and efficient membranes in acidic media, but there is a lack of durable non-noble metal electrocatalysts suitable for acidic environments. Herein, we designed a new type of electrocatalysts consisting of transition metal halide molecules covered by graphene sheets, which is supported by experiments. To rapidly screen the best catalysts from numerous candidate materials, the electronic structures, reaction free energies and overpotentials of those graphene-covered halide catalysts were studied by the first-principles calculations to predict the catalytic activities for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER).

View Article and Find Full Text PDF

Introducing anion vacancies on two-dimensional transition-metal dichalcogenides (TMDs) would significantly improve their catalytic activity. In this work, we proposed a solid-phase reduction (SPR) strategy to simultaneously achieve efficient exfoliation and controlled generation of chalcogen vacancies on TMDs. Consecutive sulfur vacancies were successfully created on the basal plane of the bulk MoS and WS, and their interlamellar distances were distinctly expanded after the SPR treatment (about 16%), which can be conveniently exfoliated by only gentle shaking.

View Article and Find Full Text PDF

Carbon nanomaterials are promising metal-free catalysts for energy conversion and storage, but the catalysts are usually developed via traditional trial-and-error methods. To rationally design and accelerate the search for the highly efficient catalysts, it is necessary to establish design principles for the carbon-based catalysts. Here, theoretical analysis and material design of metal-free carbon nanomaterials as efficient photo-/electrocatalysts to facilitate the critical chemical reactions in clean and sustainable energy technologies are reviewed.

View Article and Find Full Text PDF

In this work, we have proven that starch nanofibrous membranes with high tensile strength, water stability and non-cytotoxicity can be produced by electrospinning of starch solution and post-treatment with GTA in vapor phase. GTA vapor phase crosslinking plays a key role in forming water-stable nanofiber membrane and improving the mechanical properties. Comparing with non-crosslinked starch fibers, the crosslinked fibers are increased by nearly 10 times in tensile strength.

View Article and Find Full Text PDF