Publications by authors named "Yonghao Han"

Most prior studies have indicated that pigeons have a tendency to rely on local information for target categorization, yet there is a lack of electrophysiological evidence to support this claim. The mesopallium ventrolaterale (MVL) is believed to play a role in processing both local and global information during visual cognition. The difference between responses of MVL neurons when pigeons are focusing on local versus global information during visual object categorization remain unknown.

View Article and Find Full Text PDF

In high-pressure experimental methods, sample heating in the pressure chamber of a diamond anvil cell is an important topic, and numerous efforts have been made to improve and develop new technologies. In this paper, we propose a new type of internal resistance heating technique, the composite heating gasket, prepared by integrating an annular heater into the sample chamber for direct heating of the sample. As the effective heating area covers the entire pressure chamber wall, a relatively quasi-uniform temperature field is formed within the sample chamber.

View Article and Find Full Text PDF

The measurements of temperature directly influence the reasonability of experiments at high pressure and high temperature. In this article, we proposed a new integration design, the built-in thermocouple, for in situ temperature measurements in high-pressure-high-temperature experiments by fusing the characteristics of thermocouples and diamond anvil cells together. By integrating an S-type thermocouple inside the gasket of a diamond anvil cell, we successfully measured the temperature of the sample straight inside the pressure chamber at high pressure and high temperature.

View Article and Find Full Text PDF

In this work, we prepared a BiOBr powder sample by the coprecipitation method for high-pressure AC impedance spectroscopy tests, high-pressure Raman measurements and high-pressure X-ray diffraction experiments to explore its structural properties and electrical transport processes under compression. Two pressure-driven isostructural phase transitions, T-T' and T'-T'' (T - tetragonal, T' - tetragonal 1 and T'' - tetragonal 2), were discovered at around 10.0 and 15.

View Article and Find Full Text PDF

To reveal the pressure effects on BiOX semiconductors, we performed in-situ Raman spectroscopy and electrical transport measurements on BiOI up to 26.1 GPa and 19.2 GPa.

View Article and Find Full Text PDF

Temperature induced pressure drift in the diamond anvil cell (DAC) is a major issue in high-pressure high-temperature experiments. It is commonly acknowledged that these drifts originate from multiple factors, but no systematic descriptions have been made so far. By introducing an internal water-cooling system in the DAC, we have performed a systematic investigation into temperature induced pressure drifts to reveal the mechanism behind them and to find a proper experimental procedure to achieve minimal pressure variation in DAC's heating experiment.

View Article and Find Full Text PDF

Impedance spectroscopy (IS) is an indispensable method of exploring electrical properties of materials. In this review, we provide an overview on the specific applications of IS measurement in the investigations of various electrical properties of materials under high pressure, including electric conduction in bulk and grain boundary, dielectric properties, ionic conduction, and electrostrictive effect. Related studies are summarized to demonstrate the method of analyzing different electrical transport processes with various designed equivalent circuits of IS and reveal some interesting phenomena of electrical properties of materials under high pressure.

View Article and Find Full Text PDF

In general, pressure calibration in diamond anvil cells (DACs) has been achieved by mixing pressure calibration materials (PCMs) with the sample inside the pressure chamber. However, the chemical reactions between the sample and PCMs are sometimes unavoidable at extreme conditions, such as high pressure and high temperature. These undesired reactions will cause pollution, induce changes in physical properties or phase transformations of PCMs, and result in tremendous error of pressure calibration.

View Article and Find Full Text PDF

impedance measurement, resistivity measurements and first-principles calculations have been performed to investigate the effect of high pressure (up to 30.2 GPa) on the metallization and dielectric properties of GaP. It is found that the carrier transport process changes from mixed grain and grain boundary conduction to pure grain conduction at 5.

View Article and Find Full Text PDF
Article Synopsis
  • The crystal structure of EuSn₂As₂ is identified as a magnetic topological insulator in its layered form and has a Bi₂Te₃-like rhombohedral symmetry.
  • Under high pressure (above 14 GPa), it transitions to a new monoclinic structure characterized by a complex 3D network of honeycomb-like Sn sheets and zigzag As chains due to a two-stage reconstruction process.
  • Electrical resistance tests show a transition from insulator to metal, and ultimately to superconductor (with a T_C of ~4 K), which occurs at specific pressures (5 and 15 GPa), indicating the material's fascinating structural and electronic properties.
View Article and Find Full Text PDF

The ionic transport properties of solid electrolyte LaF3 were systematically studied under high pressures up to 30.6 GPa with alternate-current impedance spectra measurements and first-principles calculations. From the impedance spectra measurements, LaF3 was found to transform from pure ionic conduction to mixed ionic and electronic conduction at 15.

View Article and Find Full Text PDF

Herein we report two new TPE-based 3D MOFs, that is, Sr-ETTB and Co-ETTB (TPE=Tetraphenylethylene, H ETTB=4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(([1,1'-biphenyl]-3,5-dicarboxylic acid))). Through tailoring outer shell electron configurations of Sr and Co cations, the fluorescence intensity of the MOFs is tuned from high emission to complete non-emission. Sr-ETTB with strong blue fluorescence shows reversible fluorescence variations in response to pressure and temperature, which is directly related to the reversible deformation of the crystal structure.

View Article and Find Full Text PDF

At ambient conditions, the lattice structure of supported ultrathin transition metal dichalcogenides (TMDs) can be effectively modified by a substrate. When compressed, the effect of substrate is far from settled. In this study, the effects of an Si substrate on the lattice structures of compressed monolayer and multilayer ReS2 were investigated by performing high-pressure Raman measurements and first-principle calculations.

View Article and Find Full Text PDF

The electrical transport and structural properties of tin oxide nanoparticles under compression have been studied by in situ impedance measurements and synchrotron X-ray diffraction (XRD) up to 27.9 GPa. It was found that the conduction of SnO can be improved significantly with compression.

View Article and Find Full Text PDF

Hydride ions (H-) have an appropriate size for fast transport, which makes the conduction of H- attractive. In this work, the H- transport properties of BaH2 have been investigated under pressure using in situ impedance spectroscopy measurements up to 11.2 GPa and density functional theoretical calculations.

View Article and Find Full Text PDF

The electrical transport behavior of the superionic conductor AgBr was systematically studied under high pressure up to 30.0 GPa with electrochemical impedance spectra measurements and first-principles calculations. From impedance spectra measurements, a pressure-induced abnormal ionic-polaronic-ionic transition was found.

View Article and Find Full Text PDF

The transition metal dichalcogenide (TMD) ReS is a promising material for optoelectronic devices because of its remarkable quantum yield. Pressure can effectively tune the optoelectronic properties of TMDs through control of the atomic displacement. Here, we systematically investigated the lattice and electronic structural evolutions of compressed multilayer ReS.

View Article and Find Full Text PDF

An unexpected superconductivity enhancement is reported in decompressed In Se . The onset of superconductivity in In Se occurs at 41.3 GPa with a critical temperature (T ) of 3.

View Article and Find Full Text PDF

The electrical transport properties of CHNHPbBr (MAPbBr) polycrystals were in situ investigated by alternating-current impedance spectroscopy under high pressures up to 5.6 GPa. It is confirmed that ionic and electronic conductions coexist in MAPbBr.

View Article and Find Full Text PDF

A two-electrode configuration was adopted in an in situ impedance measurement system to determine the ionic conductivity at high pressures in a diamond anvil cell. In the experimental measurements, Mo thin-films were specifically coated on tops of the diamond anvils to serve as a pair of capacitance-like electrodes for impedance spectrum measurements. In the spectrum analysis, a Warburg impedance element was introduced into the equivalent circuit to reveal the ionic transport property among other physical properties of a material at high pressures.

View Article and Find Full Text PDF

In situ impedance measurements were employed to investigate the electrical transport properties of BaMoO under pressures of up to 20.0 GPa. Two anomalous changes in the electrical parameters were found, related to the pressure-induced structural phase transitions.

View Article and Find Full Text PDF

Recent scientific advances on organic-inorganic hybrid perovskites are mainly focused on the improvement of power conversion efficiency. So far, how compression tunes their electronic and structural properties remains less understood. By combining in situ photocurrent, impedance spectroscopy, and X-ray diffraction (XRD) measurements, we have studied the electrical transport and structural properties of compressed CH3NH3PbI3 (MAPbI3) nanorods.

View Article and Find Full Text PDF

In this work, we report the pressure-dependent electrical transport and structural properties of SnSe. In our experiments an electronic transition from a semiconducting to semimetallic state was observed at 12.6 GPa, followed by an orthorhombic to monoclinic structural transition.

View Article and Find Full Text PDF

The interface effect is one of the most important factors that strongly affect the structural transformations and the properties of nano-/submicro-crystals under pressure. However, characterization of the granular boundary changes in materials is always challenging. Here, using tetrakaidecahedral Zn2SnO4 microcrystals as an example, we employed alternating current impedance, X-ray diffraction methods and transmission electron microscopy to elucidate the effect of the interface on the structure and electrical transport behavior of the Zn2SnO4 material under pressure.

View Article and Find Full Text PDF

Herein, we report on the intriguing electrical transport properties of compressed AlAs. The relative permittivity and the resistances of both the grain and bulk boundaries vary abnormally at ∼10.9 GPa, accompanied by the cubic-hexagonal structural transition of AlAs.

View Article and Find Full Text PDF