The precise modulation of PbI presence is of paramount importance in the domain of perovskite solar cell fabrication, particularly when employing the two-step method. The distinct crystallization trajectory inherent to this method often leaves unreacted PbI at the buried interface, which can create a large number of defect states. To address this challenge, we have introduced a strategic predeposition of the dipole molecule, 3-(decyldimethylammonio)propane sulfonate inner salt (3DPSI).
View Article and Find Full Text PDFMetal halide perovskites have attracted significant attention in photodetection due to their superior photophysical properties and improved stability. However, the performance of their photodiodes is predominantly limited by non-radiative recombination within the perovskite layer or at interfaces. Here, molecular engineering via phenylethylammonium chloride for interfacial modulation and methylenediammonium dichloride for bulk modulation is introduced into vertical perovskite photodiodes to boost the photodetection performance.
View Article and Find Full Text PDFInverted perovskite solar cells based on weakly polarized hole-transporting layers suffer from the problem of polarity mismatch with the perovskite precursor solution, resulting in a nonideal wetting surface. In addition to the bottom-up growth of the polycrystalline halide perovskite, this will inevitably worse the effects of residual strain and heterogeneity at the buried interface on the interfacial carrier transport and localized compositional deficiency. Here, we propose a multifunctional hybrid pre-embedding strategy to improve substrate wettability and address unfavorable strain and heterogeneities.
View Article and Find Full Text PDFThe best research-cell efficiency of perovskite solar cells (PSCs) is comparable with that of mature silicon solar cells (SSCs); However, the industrial development of PSCs lags far behind SSCs. PSC is a multiphase and multicomponent system, whose consequent interfacial energy loss and carrier loss seriously affect the performance and stability of devices. Here, by using spinodal decomposition, a spontaneous solid phase segregation process, in situ introduces a poly(3-hexylthiophene)/perovskite (P3HT/PVK) heterointerface with interpenetrating structure in PSCs.
View Article and Find Full Text PDFPerovskite solar cells have achieved rapid progress in the new-generation photovoltaic field, but the commercialization lags behind owing to the device stability issue under operational conditions. Ultimately, the instability issue is attributed to the soft lattice of ionic perovskite crystal. In brief, metal halide perovskite materials are susceptible to structural instability processes, including phase segregation, component loss, lattice distortion, and fatigue failure under harsh external stimuli such as high humidity, strong irradiation, wide thermal cycles, and large stress.
View Article and Find Full Text PDFMetal halide perovskites have aroused burgeoning interest in the field of photovoltaics owing to their versatile optoelectronic properties. The outstanding power conversion efficiency, high specific power (i.e.
View Article and Find Full Text PDFUnderstanding the fundamental properties of buried interfaces in perovskite photovoltaics is of paramount importance to the enhancement of device efficiency and stability. Nevertheless, accessing buried interfaces poses a sizeable challenge because of their non-exposed feature. Herein, the mystery of the buried interface in full device stacks is deciphered by combining advanced in situ spectroscopy techniques with a facile lift-off strategy.
View Article and Find Full Text PDFLead halide perovskite films have witnessed rapid progress in optoelectronic devices, whereas polycrystalline heterogeneities and serious native defects in films are still responsible for undesired recombination pathways, causing insufficient utilization of photon-generated charge carriers. Here, radiation-enhanced polycrystalline perovskite films with ultralong carrier lifetimes exceeding 6 μs and single-crystal-like electron-hole diffusion lengths of more than 5 μm are achieved. Prolongation of charge-carrier activities is attributed to the electronic structure regulation and the defect elimination at crystal boundaries in the perovskite with the introduction of phenylmethylammonium iodide.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2020
Perovskite solar cells (PSCs) toward practical application relies on high efficiency, long lifetime, low toxicity, and device up-scaling. To realize large-area PSCs, a green solution-bathing strategy is delivered to prepare high-performance PSCs. By utilizing 2-pentanol as a green solvent and formamidinium chloride (FACl) as a solute in the green solution-bathing process, perovskite films with enlarged grain sizes, improved crystallinity, and alleviated defect state density were obtained, resulting in the enhancement in the power conversion efficiency of PSCs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2019
A novel set of hole-transporting materials (HTMs) based on π-extended diindolotriazatruxene (DIT) core structure with electron-rich methoxy-engineered functional groups were designed and synthesized via a facile two-step procedure. All compounds were afforded from inexpensive precursors without a complex purification process. Cyclic voltammograms indicate that the resulting HTMs exhibit suitable highest occupied molecular orbital (HOMO) energy levels, which facilitate efficient hole injection from the valence band of perovskites into the HOMO of DIT-based HTMs as confirmed by time-resolved photoluminescence.
View Article and Find Full Text PDFAs one of the most promising semiconductor oxide materials, titanium dioxide (TiO) absorbs UV light but not visible light. To address this limitation, the introduction of Ti defects represents a common strategy to render TiO visible-light responsive. Unfortunately, current hurdles in Ti generation technologies impeded the widespread application of Ti modified materials.
View Article and Find Full Text PDFZnO semiconductor oxides are versatile functional materials that are used in photoelectronics, catalysis, sensing, etc. The Zn-O surface electronic states of semiconductor oxides were formed on the ZnO surface by Zn 4s and O 2p orbital coupling with the diboron compound's B 2p orbitals. The formation of spin-coupled surface states was based on the spin-orbit interaction on the interface, which has not been reported before.
View Article and Find Full Text PDFMetal halide perovskite films are endowed with the nature of ions and polycrystallinity. Formamidinium iodide (FAI)-based perovskite films, which include large cations (FA) incorporated into the crystal lattice, are most likely to induce local defects due to the presence of the unreacted FAI species. Here, a diboron-assisted strategy is demonstrated to control the defects induced by the unreacted FAI both inside the grain boundaries and at the surface regions.
View Article and Find Full Text PDFThe highest power conversion efficiencies (PCEs) reported for perovskite solar cells (PSCs) with inverted planar structures are still inferior to those of PSCs with regular structures, mainly because of lower open-circuit voltages (). Here we report a strategy to reduce nonradiative recombination for the inverted devices, based on a simple solution-processed secondary growth technique. This approach produces a wider bandgap top layer and a more n-type perovskite film, which mitigates nonradiative recombination, leading to an increase in by up to 100 millivolts.
View Article and Find Full Text PDFCobalt telluride (CoTe) nanosheets as supercapacitor electrode materials are grown on carbon fiber paper (CFP) by a facile hydrothermal process. The CoTe electrode exhibits significant pseudo-capacitive properties with a highest of 622.8 F g at 1 A g and remarkable cycle stability.
View Article and Find Full Text PDFThe organic-inorganic lead halide perovskite layer is a crucial factor for the high performance perovskite solar cell (PSC). We introduce CHNHBr in the precursor solution to prepare CHNHPbIBr hybrid perovskite, and an uniform perovskite layer with improved crystallinity and apparent grain contour is obtained, resulting in the significant improvement of photovoltaic performance of PSCs. The effects of CHNHBr on the perovskite morphology, crystallinity, absorption property, charge carrier dynamics and device characteristics are discussed, and the improvement of open circuit voltage of the device depended on Br doping is confirmed.
View Article and Find Full Text PDFA compact TiO(2) layer is crucial to achieve high-efficiency perovskite solar cells. In this study, we developed a facile, low-cost and efficient method to fabricate a pinhole-free and ultrathin blocking layer based on highly crystallized TiO(2) quantum dots (QDs) with an average diameter of 3.6 nm.
View Article and Find Full Text PDF