Topological phases play a crucial role in the fundamental physics of light-matter interaction and emerging applications of quantum technologies. However, the topological band theory of waveguide QED systems is known to break down, because the energy bands become disconnected. Here, we introduce a concept of the inverse energy band and explore analytically topological scattering in a waveguide with an array of quantum emitters.
View Article and Find Full Text PDFTopological photonics was initially inspired by the quantum-optical analogy between the Schrödinger equation for an electron wavefunction and the paraxial equation for a light beam. Here, we reveal an unexpected phenomenon in topological pumping observed in arrays of nonparaxial optical waveguides where the quantum-optical analogy becomes invalid. We predict theoretically and demonstrate experimentally an asymmetric topological pumping when the injected field transfers from one side of the waveguide array to the other side whereas the reverse process is unexpectedly forbidden.
View Article and Find Full Text PDFWe predict the existence of a novel interaction-induced spatial localization in a periodic array of qubits coupled to a waveguide. This localization can be described as a quantum analogue of a self-induced optical lattice between two indistinguishable photons, where one photon creates a standing wave that traps the other photon. The localization is caused by the interplay between on-site repulsion due to the photon blockade and the waveguide-mediated long-range coupling between the qubits.
View Article and Find Full Text PDFWe develop a rigorous theoretical approach for analyzing inelastic scattering of photon pairs in arrays of two-level qubits embedded into a waveguide. Our analysis reveals a strong enhancement of the scattering when the energy of incoming photons resonates with the double-excited subradiant states. We identify the role of different double-excited states in the scattering, such as superradiant, subradiant, and twilight states, as a product of single-excitation bright and subradiant states.
View Article and Find Full Text PDFQuantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL).
View Article and Find Full Text PDF