Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different.
View Article and Find Full Text PDFGroup 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection.
View Article and Find Full Text PDFPlasma cells produce large quantities of antibodies and so play essential roles in immune protection. Plasma cells, including a long-lived subset, reside in the bone marrow where they depend on poorly defined microenvironment-linked survival signals. We show that bone marrow plasma cells use the ligand-gated purinergic ion channel P2RX4 to sense extracellular ATP released by bone marrow osteoblasts through the gap-junction protein pannexin 3 (PANX3).
View Article and Find Full Text PDFThymic epithelial cells (TEC) control T cell development and play essential roles in establishing self-tolerance. By using -driven ablation of gene in TEC, we identified as a critical factor in TEC development. deficiency resulted in a hypoplastic thymus-evident from fetal stages into adulthood-in which a dramatic increase in the frequency of apoptotic TEC was observed.
View Article and Find Full Text PDFThe transcription factor TCF-1 (encoded by ) plays critical roles in several lineages of hematopoietic cells. In this study, we examined the molecular basis for regulation in T cells, innate lymphoid cells, and migratory conventional dendritic cells that we find express . We identified a 1 kb regulatory element crucial for the initiation of expression in T cells and innate lymphoid cells, but dispensable for expression in -expressing dendritic cells.
View Article and Find Full Text PDFInteractions between thymic epithelial cells (TEC) and developing thymocytes are essential for T cell development, but molecular insights on TEC and thymus homeostasis are still lacking. Here we identify distinct transcriptional programs of TEC that account for their age-specific properties, including proliferation rates, engraftability and function. Further analyses identify Myc as a regulator of fetal thymus development to support the rapid increase of thymus size during fetal life.
View Article and Find Full Text PDFThe thymus is critical for the establishment of the adaptive immune system and the development of a diverse T cell repertoire. T cell development depends upon cell-cell interactions with epithelial cells in the thymus. The thymus is composed of two different types of epithelial cells: cortical and medullary epithelial cells.
View Article and Find Full Text PDFWe previously identified the transcriptional regulator Zbtb32 as a factor that can promote T cell tolerance in the Non-Obese Diabetic (NOD) mouse, a model of Type 1 diabetes. Antigen targeted to DCIR2 dendritic cells (DCs) inhibited both diabetes and effector T cell expansion in NOD mice. Furthermore, Zbtb32 was preferentially induced in autoreactive CD4 T cells stimulated by these tolerogenic DCIR2 DCs, and overexpression of Zbtb32 in islet-specific T cells inhibited the diabetes development by limiting T cell proliferation and cytokine production.
View Article and Find Full Text PDFDendritic cell (DC)-mediated T cell tolerance deficiencies contribute to the pathogenesis of autoimmune diseases such as type 1 diabetes. Delivering self-antigen to dendritic-cell inhibitory receptor-2 (DCIR2) DCs can delay but not completely block diabetes development in NOD mice. These DCIR2-targeting antibodies induce tolerance via deletion and anergy, but do not increase islet-specific Tregs.
View Article and Find Full Text PDFType I IFN (IFN-I) dysregulation contributes to type 1 diabetes (T1D) development, and although increased IFN-I signals are pathogenic at the initiation of autoimmune diabetes, IFN-I dysregulation at later pathogenic stages more relevant for therapeutic intervention is not well understood. We discovered that 5 key antigen-presenting cell subsets from adult prediabetic NOD mice have reduced responsiveness to IFN-I that is dominated by a decrease in the tonic-sensitive subset of IFN-I response genes. Blockade of IFNAR1 in prediabetic NOD mice accelerated diabetes and increased Th1 responses.
View Article and Find Full Text PDFPatients with hypomorphic mutations in and patients with hypermorphic mutations in share several clinical and cellular phenotypes suggesting overlapping pathophysiologic mechanisms. We, therefore, examined cytokine signaling and CD4 T cell differentiation in these cohorts to characterize common pathways. As expected, differentiation of Th17 cells was impaired in both cohorts.
View Article and Find Full Text PDFInnate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer.
View Article and Find Full Text PDFNF-κB essential modulator (NEMO) and cylindromatosis protein (CYLD) are intracellular proteins that regulate the NF-κB signaling pathway. Although mice with either CYLD deficiency or an alteration in the zinc finger domain of NEMO (K392R) are born healthy, we found that the combination of these two gene defects in double mutant (DM) mice is early embryonic lethal but can be rescued by the absence of TNF receptor 1 (TNFR1). Notably, NEMO was not recruited into the TNFR1 complex of DM cells, and consequently NF-κB induction by TNF was severely impaired and DM cells were sensitized to TNF-induced cell death.
View Article and Find Full Text PDFDuring autoimmunity, the normal ability of dendritic cells (DCs) to induce T-cell tolerance is disrupted; therefore, autoimmune disease therapies based on cell types and molecular pathways that elicit tolerance in the steady state may not be effective. To determine which DC subsets induce tolerance in the context of chronic autoimmunity, we used chimeric antibodies specific for DC inhibitory receptor 2 (DCIR2) or DEC-205 to target self-antigen to CD11b(+) (cDC2) DCs and CD8(+) (cDC1) DCs, respectively, in autoimmune-prone nonobese diabetic (NOD) mice. Antigen presentation by DCIR2(+) DCs but not DEC-205(+) DCs elicited tolerogenic CD4(+) T-cell responses in NOD mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2014
Novel inhibitor of histone acetyltransferase repressor (NIR) is a transcriptional corepressor with inhibitor of histone acetyltransferase activity and is a potent suppressor of p53. Although NIR deficiency in mice leads to early embryonic lethality, lymphoid-restricted deletion resulted in the absence of double-positive CD4(+)CD8(+) thymocytes, whereas bone-marrow-derived B cells were arrested at the B220(+)CD19(-) pro-B-cell stage. V(D)J recombination was preserved in NIR-deficient DN3 double-negative thymocytes, suggesting that NIR does not affect p53 function in response to physiologic DNA breaks.
View Article and Find Full Text PDFCYLD is a tumour suppressor gene mutated in familial cylindromatosis, a genetic disorder leading to the development of skin appendage tumours. It encodes a deubiquitinating enzyme that removes Lys63- or linear-linked ubiquitin chains. CYLD was shown to regulate cell proliferation, cell survival and inflammatory responses, through various signalling pathways.
View Article and Find Full Text PDFWe have previously shown that interleukin-2 (IL-2) inhibits dendritic cell (DC) development from mouse bone marrow (BM) precursors stimulated with the ligand for FMS-like tyrosine kinase 3 receptor (Flt3L), and have provided evidence that this inhibition occurs at the monocyte DC precursor stage of DC development. Here, we explored the mechanism of IL-2-mediated inhibition of DC development. First, we showed that these in vitro cultures accurately model DCs that develop in vivo by comparing gene and protein expression of the three main Flt3L-induced DC subsets from the BM, CD11b(+) and CD24(+) conventional DCs (cDCs) and plasmacytoid DCs (pDCs) with their respective ex vivo spleen DC subsets (CD11b(+), CD8(+) and pDCs).
View Article and Find Full Text PDFDCs are important mediators of peripheral tolerance for the prevention of autoimmunity. Chimeric αDEC-205 antibodies with attached antigens allow in vivo antigen-specific stimulation of T cells by CD8(+) DCs, resulting in tolerance in nonautoimmune mice. However, it is not clear whether DC-mediated tolerance induction occurs in the context of ongoing autoimmunity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2013
Mutations in the TNF family of proteins have been associated with inherited forms of immune deficiency. Using an array-based sequencing assay, we identified an autosomal-dominant deficiency in TNF-like weak inducer of apoptosis (TWEAK; TNFSF12) in a kindred with recurrent infection and impaired antibody responses to protein and polysaccharide vaccines. This mutation occurs in the sixth exon of TWEAK and results in the amino acid substitution R145C within the conserved TNF-homology domain of the full-length protein.
View Article and Find Full Text PDFEctodermal dysplasia with immune deficiency (EDI) is an immunological and developmental disorder caused by alterations in the gene encoding NF-κB essential modulator (NEMO; also known as IκB kinase γ subunit [IKKγ]). Missense mutations in the gene encoding NEMO are associated with reduced signal-induced nuclear translocation of NF-κB proteins, resulting in defective expression of NF-κB target genes. Here, we report 2 unrelated male patients with EDI, both of whom have normal NEMO coding sequences, but exhibit a marked reduction in expression of full-length NEMO protein.
View Article and Find Full Text PDFNADPH oxidase-2 (Nox2)/gp91(phox) and p47(phox) deficient mice are prone to hyper-inflammatory responses suggesting a paradoxical role for Nox2-derived reactive oxygen species (ROS) as anti-inflammatory mediators. The molecular basis for this mode of control remains unclear. Here we demonstrate that IFNγ/LPS matured p47(phox-/-)-ROS deficient mouse dendritic cells (DC) secrete more IL-12p70 than similarly treated wild type DC, and in an in vitro co-culture model IFNγ/LPS matured p47(phox-/-) DC bias more ovalbumin-specific CD4(+) T lymphocytes toward a Th1 phenotype than wild type (WT) DC through a ROS-dependent mechanism linking IL-12p70 expression to regulation of p38-MAPK activation.
View Article and Find Full Text PDFCYLD is a lysine 63-deubiquitinating enzyme that inhibits NF-κB and JNK signaling. Here, we show that CYLD knock-out mice have markedly increased numbers of regulatory T cells (Tregs) in peripheral lymphoid organs but not in the thymus. In vitro stimulation of CYLD-deficient naive T cells with anti-CD3/28 in the presence of TGF-β led to a marked increase in the number of Foxp3-expressing T cells when compared with stimulated naive control CD4(+) cells.
View Article and Find Full Text PDF