Publications by authors named "Yonggang Leng"

Mechanical fault diagnosis usually requires not only identification of the fault characteristic frequency, but also detection of its second and/or higher harmonics. However, it is difficult to detect a multi-frequency fault signal through the existing Stochastic Resonance (SR) methods, because the characteristic frequency of the fault signal as well as its second and higher harmonics frequencies tend to be large parameters. To solve the problem, this paper proposes a multi-frequency signal detection method based on Frequency Exchange and Re-scaling Stochastic Resonance (FERSR).

View Article and Find Full Text PDF

Flexible pressure sensors have many potential applications in wearable electronics, robotics, health monitoring, and more. In particular, liquid-metal-based sensors are especially promising as they can undergo strains of over 200% without failure. However, current liquid-metal-based strain sensors are incapable of resolving small pressure changes in the few kPa range, making them unsuitable for applications such as heart-rate monitoring, which require a much lower pressure detection resolution.

View Article and Find Full Text PDF

A two-dimensional Duffing oscillator which can produce stochastic resonance (SR) is studied in this paper. We introduce its SR mechanism and present a generalized parameter-adjusted SR (GPASR) model of this oscillator for the necessity of parameter adjustments. The Kramers rate is chosen as the theoretical basis to establish a judgmental function for judging the occurrence of SR in this model; and to analyze and summarize the parameter-adjusted rules under unmatched signal amplitude, frequency, and/or noise-intensity.

View Article and Find Full Text PDF