Publications by authors named "Yongfeng Lu"

Interfacing CHNHPbI (MAPbI) with 2D van der Waals materials in lateral photodetectors can suppress the dark current and driving voltage, while the interlayer charge separation also renders slower charge dynamics. In this work, we show that more than one order of magnitude faster photoresponse time can be achieved in MAPbI/MoS lateral photodetectors by locally separating the photocharge generation and recombination through a parallel channel of single-layer MAPbI. Photocurrent () mapping reveals electron diffusion lengths of about 20 μm in single-layer MAPbI and 4 μm in the MAPbI/MoS heterostructure.

View Article and Find Full Text PDF

Halogenated organic compounds are persistent pollutants that pose a serious threat to human health and the safety of ecosystems. Cobamides are essential cofactors for reductive dehalogenases (RDase) in organohalide-respiring bacteria (OHRB), which catalyze the dehalogenation process. This review systematically summarizes the impact of cobamides on organohalide respiration.

View Article and Find Full Text PDF
Article Synopsis
  • - Single-walled carbon nanotubes (SWNT) exhibit strong near-infrared fluorescence that enables sensitive detection of target analytes, even at the single molecule level, through changes in fluorescence properties.
  • - Current methods for immobilizing SWNT sensors on solid substrates face challenges like high costs and long fabrication times, with a recently reported 5-day process for improving sensor performance.
  • - The new method developed by the researchers reduces the immobilization time to just 2 days, enhances fluorescence intensity, and maintains good distribution of SWNTs, making it a more efficient option for creating effective sensing systems.
View Article and Find Full Text PDF

Tick-borne Apicomplexan parasites pose a significant threat to both public health and animal husbandry. Identifying potential pathogenic parasites and gathering their epidemiological data are essential for prospectively preventing and controlling infections. In the present study, genomic DNA of ticks collected from two goat flocks (Goatflock1 and Goatflock2) and one dog group (Doggroup) were extracted and the 18S rRNA gene of Babesia/Theileria/Colpodella spp.

View Article and Find Full Text PDF

This study investigated the release of microplastics and nanoplastics from plastic containers and reusable food pouches under different usage scenarios, using DI water and 3% acetic acid as food simulants for aqueous foods and acidic foods. The results indicated that microwave heating caused the highest release of microplastics and nanoplastics into food compared to other usage scenarios, such as refrigeration or room-temperature storage. It was found that some containers could release as many as 4.

View Article and Find Full Text PDF

Coronary artery disease (CAD) is one of the major cardiovascular diseases and represents the leading causes of global mortality. Developing new diagnostic and therapeutic approaches for CAD treatment are critically needed, especially for an early accurate CAD detection and further timely intervention. In this study, we successfully isolated human plasma small extracellular vesicles (sEVs) from four stages of CAD patients, that is, healthy control, stable plaque, non-ST-elevation myocardial infarction, and ST-elevation myocardial infarction.

View Article and Find Full Text PDF

Domain features and domain walls in lead halide perovskites (LHPs) have attracted broad interest due to their potential impact on optoelectronic properties of this unique class of solution-processable semiconductors. Using nonpolarized light and simple imaging configurations, ferroelastic twin domains and their switchings through multiple consecutive phase transitions are directly visualized. This direct optical contrast originates from finite optical reflections at the wall interface between two compositionally identical, orientationally different, optically anisotropic domains inside the material bulk.

View Article and Find Full Text PDF

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as MoS exhibit exceptionally strong nonlinear optical responses, while nanoscale control of the amplitude, polar orientation, and phase of the nonlinear light in TMDCs remains challenging. In this work, by interfacing monolayer MoS with epitaxial PbZr Ti O (PZT) thin films and free-standing PZT membranes, the amplitude and polarization of the second harmonic generation (SHG) signal are modulated via ferroelectric domain patterning, which demonstrates that PZT membranes can lead to in-operando programming of nonlinear light polarization. The interfacial coupling of the MoS polar axis with either the out-of-plane polar domains of PZT or the in-plane polarization of domain walls tailors the SHG light polarization into different patterns with distinct symmetries, which are modeled via nonlinear electromagnetic theory.

View Article and Find Full Text PDF

The aim of this study was to prepare Cinnamomum cassia essential oil (CEO) impregnated chitosan nanoparticles (CS-CEO) and assess its pharmacological activity against breast cancer. Cinnamon oil-loaded chitosan nanoparticles were investigated for their physicochemical properties, stability, and anti-cancer activities both in vitro and in vivo. The prepared CS-CEO nanoparticles have a particle size, zeta-potential, entrapment efficiency and drug loading of (215.

View Article and Find Full Text PDF

Background: spp., causative agents of anaplasmosis, pose significant a threat to public health and economic losses in livestock farming. Co-infections/co-existence of various spp.

View Article and Find Full Text PDF

Graphene with in-plane nanoholes, named holey graphene, shows great potential in electrochemical applications due to its fast mass transport and improved electrochemical activity. Scalable nanomanufacturing of holey graphene is generally based on chemical etching using hydrogen peroxide to form through-the-thickness nanoholes on the basal plane of graphene. In this study, we probe into the fundamental mechanisms of nanohole formation under peroxide etching an integrated experimental and computational effort.

View Article and Find Full Text PDF

Rotator cuff tendon injuries often occur at the tendon-to-bone interface (i.e., enthesis) area, with a high prevalence for the elderly population, but the underlying reason for this phenomenon is still unknown.

View Article and Find Full Text PDF

Laser shockwave cleaning (LSC) has attracted growing attention due to its advantages in non-contact, site-selective nanoparticle removal on microelectronic/optical devices. However, an uncleaned blind-zone formed directly under the laser-induced plasma kernel severely affects the cleaning effect. Laser shockwave cleaning of 300 nm polystyrene latex nanoparticles on silicon wafers is fully explored to understand the blind-zone formation mechanism.

View Article and Find Full Text PDF

The third-generation semiconductors are the cornerstone of the power semiconductor leap forward and have attracted much attention because of their excellent properties and wide applications. Meanwhile, femtosecond laser processing as a convenient method further improves the performance of the related devices and expands the application prospect. In this work, an approximate 3 times improvement of the internal quantum efficiency (IQE) and a 5.

View Article and Find Full Text PDF

Cell-cell adhesions are often subjected to mechanical strains of different rates and magnitudes in normal tissue function. However, the rate-dependent mechanical behavior of individual cell-cell adhesions has not been fully characterized due to the lack of proper experimental techniques and therefore remains elusive. This is particularly true under large strain conditions, which may potentially lead to cell-cell adhesion dissociation and ultimately tissue fracture.

View Article and Find Full Text PDF

Due to the natural cellulose encapsulated in both lignin and hemicellulose matrices, as well as in plant cell walls with a compact and complex hierarchy, extracting cellulose nanofibers (CNFs) from lignocellulosic biomass is challenging. In this study, a sustainable high yield strategy with respect to other CNF preparations was developed. The cellulose was liberated from plant cell walls and fibrillated to a 7-22 nm thickness in one bath treatment with HPO and HO under mild conditions.

View Article and Find Full Text PDF

Cadmium sulfide (CdS) as one of the most common visible-light-responsive photocatalysts has been widely investigated for hydrogen generation. However, its low solar-hydrogen conversion efficiency caused by fast carrier recombination and poor catalytic activity hinders its practical applications. To address this issue, we develop a novel and highly efficient nickel-cobalt phosphide and phosphate cocatalyst-modified CdS (NiCoP/CdS/NiCoPi) photocatalyst for hydrogen evolution.

View Article and Find Full Text PDF

Numerous valuable studies on electron dynamics have focussed on the extraordinary properties of molybdenum disulfide (MoS); however, most of them were confined to the level below the damage threshold. Here the electron dynamics of MoS under intense ultrafast laser irradiation was investigated by experiments and simulations. Two kinds of ablation mechanisms were revealed, which led to two distinct types of electron dynamics and final ablation morphology.

View Article and Find Full Text PDF

Correction for 'Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene' by Huiwu Yu et al., Chem. Commun.

View Article and Find Full Text PDF

Highly flexible and stable plasmonic nanopaper comprised of silver nanocubes and cellulose nanofibres was fabricated through a self-assembly-assisted vacuum filtration method. It shows significant enhancement of the fluorescence emission with an enhancement factor of 3.6 and Raman scattering with an enhancement factor of ∼104, excellent mechanical properties with tensile strength of 62.

View Article and Find Full Text PDF

We achieved the controllable formation of laser-induced periodic surface structures (LIPSSs) on ZnO films deposited on fused silica induced by modulated temporally shaped femtosecond (fs) laser pulses (800 nm, 50 fs, 1 kHz) through the laser scanning technique. Two-dimensional (2D) high spatial frequency LIPSSs (HSFLs) with a period from 100 to 200 nm could be flexibly modulated based on the preprocessed nanostructures with appropriate fs laser irradiation conditions (fluence, scanning speed, and pulse delay). The finite-difference time-domain (FDTD) method combined with the Drude model was employed to calculate the redistributions of electric fields, which suggested the origin of HSFL formation.

View Article and Find Full Text PDF

The detection sensitivity of chlorine (Cl) and sulfur (S) elements is poor using direct laser-induced breakdown spectroscopy (LIBS) because of the high ionization energy of Cl and S. Therefore, a new technique, namely indirect laser-induced breakdown spectroscopy (ID-LIBS), was proposed to improve the detection sensitivity of Cl and S elements. The method detected Cl in water by indirectly detecting the excess silver (Ag) after the precipitation reaction of Ag and chloride.

View Article and Find Full Text PDF