Publications by authors named "Yongfang Qian"

An ingenious microstructure of electromagnetic microwave absorption materials is crucial to achieve strong absorption and a broad bandwidth. Herein, one-dimensional (1D) carbon fibers with implantation of zero-dimensional (0D) ZIF-8-derived carbon frameworks and construction of a three-dimensional (3D) microcosmic multichannel porous structure are fabricated by electro-blown spinning, solvent-thermal reaction, and high-temperature pyrolysis techniques. The 1D carbon fiber skeleton with a multichannel structure provides a direct axial conductive pathway for charge transport, which plays an important role in dielectric loss.

View Article and Find Full Text PDF

Due to their high porosity, large specific surface area, and structural similarity with the extracellular matrix (ECM), electrospun nanofiber membranes are often endowed with the antibacterial properties for biomedical applications. The purpose of this study was to synthesize nano-structured Sc2O3-MgO by doping Sc, calcining at 600 °C, and then loading it onto the PCL/PVP substrates with electrospinning technology with the aim of developing new efficient antibacterial nanofiber membranes for tissue engineering. A scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS) were used to study the morphology of all formulations and analyze the types and contents of the elements, and an X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) were used for further analysis.

View Article and Find Full Text PDF
Article Synopsis
  • This research focuses on improving nano-MgO's antibacterial properties through ion doping (specifically with Sc) and creating specific textures on its surface.
  • When 10% Sc is added to the nano-MgO, it results in a uniform, nano-textured surface that enhances its antibacterial effectiveness against bacterial strains E. coli and S. aureus.
  • The 10% Sc-doped nano-MgO (SM-10) shows a minimum bactericidal concentration (MBC) of 0.03 mg/mL, significantly better than the non-doped and commercial versions of nano-MgO, indicating strong potential for antibacterial applications.
View Article and Find Full Text PDF

The multifunctional polyethylene terephthalate (PET) fabrics were successfully prepared through a dip-coating technology to endow the flame retardant and antibacterial properties of PET fabrics, which are extensively used in many fields. The flame retardant and antibacterial agent was synthesized by a double drop-reverse precipitation method and surface-modified by the mixtures of titanate coupling agents and stearic acid to result in a good compatibility of the hydrophilic nano-Mg(OH) and the hydrophobic PET fabrics. The results indicated that the suitable synthesis conditions of nano-Mg(OH) are: Mg concentration 1.

View Article and Find Full Text PDF

In this study, guar gum fibers were obtained by wet spinning, in which epichlorohydrin (ECH) and calcium chloride (CaCl) were used as the cross-linking agent and metal complexing agent, respectively. The fibers' chemical structure, morphology, crystallinity, and thermal and mechanical properties were analyzed by Fourier infrared spectroscopy, scanning electron microscopy, and so forth. The results showed that ECH reacted with guar gum and formed ether bonds.

View Article and Find Full Text PDF

Background: The electrospinning and the bubble electrospinning provide facile ways for the fabrication of functional nanofibers by incorporating rutin/hydroxypropyl-β-cyclodextrin inclusion complex (RT/HP-β-CD-IC) in Polyvinyl Alcohol (PVA). Few patents on incorporation of rutin and cyclodextrin in nanofibers has been reported.

Objective: The study aimed at increasing the loading amount of rutin in the electrospun nanofibers to obtain ultraviolet resistant property.

View Article and Find Full Text PDF

In this study, gelatin and pullulan were successfully prepared as a novel type of protein-polysaccharide composite nanofibrous membrane by electrospinning at room temperature with deionized water as the solvent. The effects of gelatin content on the properties of the solution, as well as the morphology of the resultant nanofibers, were investigated. Scanning electron microscopy (SEM) was utilized to observe the surface morphology.

View Article and Find Full Text PDF

To improve the interfacial bonding and thermal stability of graphene oxide (GO)/polypropylene (PP) composite fibers, a composite fiber with PP as the matrix, GO as reinforcement and maleic anhydride-grafted PP (PP-g-MAH) as a compatibilizer was prepared by a simple and efficient melt-blending method. The GO content was 0.0⁻5.

View Article and Find Full Text PDF

This study aimed to investigate the incorporation of rutin into electrospun pullulan and poly(vinyl alcohol) (PVA) nanofibers to obtain ultraviolet (UV)-resistant properties. The effect of weight ratios between pullulan and PVA, and the addition of rutin on the nanofibers' morphology and diameters were studied and characterized by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) analysis was utilized to investigate the interaction between pullulan and PVA, as well as with rutin.

View Article and Find Full Text PDF

To improve water-resistant ability and mechanical properties of silk fibroin (SF)/hydroxybutyl chitosan (HBC) nanofibrous scaffolds for tissue-engineering applications, genipin, glutaraldehyde (GTA), and ethanol were used to crosslink electrospun nanofibers, respectively. The mechanical properties of nanofibrous scaffolds were obviously improved after 24 h of crosslinking with genipin and were superior to those crosslinked with GTA and ethanol for 24 h. SEM indicated that crosslinked nanofibers with genipin and GTA vapor had good water-resistant ability.

View Article and Find Full Text PDF

The aim of this study is to investigate cross-linked gelatin-chitosan nanofibers produced by means of electrospinning. Gelatin and chitosan nanofibers were electrospun and then cross-linked by glutaraldehyde (GTA) vapor at room temperature. Scanning electron microscopy (SEM) images showed that the cross-linked mats could keep their nanofibrous structure after being soaked in deionized water at 37° C.

View Article and Find Full Text PDF

Silk fibroin (SF)-hydroxybutyl chitosan (HBC) blend nanofibrous scaffolds were fabricated using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and trifluoroacetic acid (TFA) as solvents to biomimic the native ECM by electrospinning. SEM results showed that the average nanofibrous diameter increased when the content of HBC was raised from 20% to 100%. Whereas water contact angle measurements confirmed that SF/HBC nanofibrous scaffolds with different weight ratios were of good hydrophilicity.

View Article and Find Full Text PDF