Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO ) in soil organic carbon (SOC) and emitting non-CO greenhouse gases (GHGs) such as nitrous oxide (N O) and methane (CH ). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e.
View Article and Find Full Text PDFHuman-induced nitrogen-phosphorus (N, P) imbalance in terrestrial ecosystems can lead to disproportionate N and P loading to aquatic ecosystems, subsequently shifting the elemental ratio in estuaries and coastal oceans and impacting both the structure and functioning of aquatic ecosystems. The N:P ratio of nutrient loading to the Gulf of Mexico from the Mississippi River Basin increased before the late 1980s driven by the enhanced usage of N fertilizer over P fertilizer, whereafter the N:P loading ratio started to decrease although the N:P ratio of fertilizer application did not exhibit a similar trend. Here, we hypothesize that different release rates of soil legacy nutrients might contribute to the decreasing N:P loading ratio.
View Article and Find Full Text PDF