Publications by authors named "Yongduo Sun"

Oxide-dispersion-strengthened (ODS) alloys generally exhibit extraordinary service performance under severe conditions through the formation of ultrafine nano oxides. YTiO has been characterized as the major strengthening oxide in Fe-based ODS alloys. First-principles energetic analyses were performed to investigate the structural, elastic and interface properties of YTiO in either Fe-based or Ni-based ODS alloys.

View Article and Find Full Text PDF

The (CYVCV) causes a viral disease that has been reported in some citrus-growing regions in countries in Eurasia including Pakistan, India, Türkiye, Iran, China, and South Korea. Recently, CYVCV was detected in a localized urban area in a town in the middle of California's citrus-growing region and marks the first occurrence of the virus in North America. CYVCV has been reported to be spread by aphid and whitefly vectors and is graft and mechanically transmitted.

View Article and Find Full Text PDF

Objectives: Citrus yellow vein clearing virus (CYVCV) is an emerging disease that poses a significant threat to the citrus industry in California. In this study, the viral genomic RNA was isolated from Eureka lemon plants in the greenhouse exhibiting CYVCV symptoms. Subsequently, the corresponding DNA genome amplicon was sequenced and annotated.

View Article and Find Full Text PDF

The active structural change of actin cytoskeleton is a general host response upon pathogen attack. This study characterized the function of the cotton (Gossypium hirsutum) actin-binding protein VILLIN2 (GhVLN2) in host defense against the soilborne fungus Verticillium dahliae. Biochemical analysis demonstrated that GhVLN2 possessed actin-binding, -bundling, and -severing activities.

View Article and Find Full Text PDF

Viruses are trailblazers in hijacking host systems for their own needs. Plant viruses have been shown to exploit alternative avenues of translocation within a host, including a challenging route through the xylem, to expand their niche and establish systemic spread, despite apparent host-imposed obstacles. Recent findings indicate that plant viruses from many families could successfully hack xylem cells in a broad range of plant hosts, including herbaceous and perennial woody plants.

View Article and Find Full Text PDF

(CTV) is the most destructive viral pathogen of citrus. During the past century, CTV induced grave epidemics in citrus-growing areas worldwide that have resulted in a loss of more than 100 million trees. At present, the virus continues to threaten citrus production in many different countries.

View Article and Find Full Text PDF

Stem pitting is a common virus-induced disease phenotype that tremendously impacts growth of perennial woody plants. How stem pitting develops in the infected trees remains unclear. Here, we assessed the development of stem pits upon infection of citrus by Citrus tristeza virus (CTV), which has been regarded as 'phloem-limited'.

View Article and Find Full Text PDF

Several studies have revealed that actin depolymerizing factors (ADFs) participate in plant defence responses; however, the functional mechanisms appear intricate and need further exploration. In this study, we identified an ADF6 gene in upland cotton (designated as GhADF6) that is evidently involved in cotton's response to the fungal pathogen Verticillium dahliae. GhADF6 binds to actin filaments and possesses actin severing and depolymerizing activities in vitro and in vivo.

View Article and Find Full Text PDF

To defend against pathogens, plants have developed a complex immune system, which recognizes the pathogen effectors and mounts defence responses. In this study, the p33 protein of Citrus tristeza virus (CTV), a viral membrane-associated effector, was used as a molecular bait to explore virus interactions with host immunity. We discovered that Citrus macrophylla miraculin-like protein 2 (CmMLP2), a member of the soybean Kunitz-type trypsin inhibitor family, targets the viral p33 protein.

View Article and Find Full Text PDF

During infection, (CTV) produces a non-coding subgenomic RNA referred to as low-molecular-weight tristeza 1 (LMT1), which for a long time has been considered as a by-product of the complex CTV replication machinery. In this study, we investigated the role of LMT1 in the virus infection cycle using a CTV variant that does not produce LMT1 (CTV-LMT1d). We showed that lack of LMT1 did not halt virus ability to replicate or form proper virions.

View Article and Find Full Text PDF

Accumulation of reactive oxygen species (ROS) is a general plant basal defense strategy against viruses. In this study, we show that infection by Citrus tristeza virus (CTV) triggered ROS burst in Nicotiana benthamiana and in the natural citrus host, the extent of which was virus-dose dependent. Using Agrobacterium-mediated expression of CTV-encoded proteins in N.

View Article and Find Full Text PDF

Viruses from the family Closteroviridae show an example of intra-genome duplications of more than one gene. In addition to the hallmark coat protein gene duplication, several members possess a tandem duplication of papain-like leader proteases. In this study, we demonstrate that domains encoding the L1 and L2 proteases in the Citrus tristeza virus genome underwent a significant functional divergence at the RNA and protein levels.

View Article and Find Full Text PDF

Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhPFN2) in response to Verticillium dahliae invasion, and evaluated its contribution to plant defense against this soil-borne fungal pathogen. GhPFN2 expression was up-regulated when cotton root was inoculated with V.

View Article and Find Full Text PDF

Examining the proteins that plants secrete into the apoplast in response to pathogen attack provides crucial information for understanding the molecular mechanisms underlying plant innate immunity. In this study, we analyzed the changes in the root apoplast secretome of the Verticillium wilt-resistant island cotton cv Hai 7124 (Gossypium barbadense) upon infection with Verticillium dahliae Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis identified 68 significantly altered spots, corresponding to 49 different proteins. Gene ontology annotation indicated that most of these proteins function in reactive oxygen species (ROS) metabolism and defense response.

View Article and Find Full Text PDF

Our previous study demonstrated that WLIM1a has dual roles in fiber elongation and secondary cell wall synthesis in upland cotton, and the protein acts either as an actin-binding protein or as a transcription factor. Because WLIM1a consists of two different LIM domains, it is possible that these elements contribute differentially to the dual functions of the protein. In this study, we dissected the two LIM domains and characterized their biochemical functions.

View Article and Find Full Text PDF

The transition from the vegetative phase to the reproductive phase is a major developmental process in flowering plants. The underlying mechanism controlling this cellular process remains a research focus in the field of plant molecular biology. In the present work, we identified a gene encoding the C3H2C3-type RING finger protein NtRCP1 from tobacco BY-2 cells.

View Article and Find Full Text PDF

Organic light-emitting diodes (OLEDs) have attracted great attention because of their potential applications in full-color displays and solid-state lights. In the continual effort to search for ideal materials for OLEDs, small molecules with bipolar transporting character are extremely attractive as they offer the possibility to achieve efficient and stable OLEDs even in a simple single-layer device. In this Research News, we review the two design strategies of bipolar materials for OLEDs: molecules with or without donor-acceptor structures.

View Article and Find Full Text PDF

An ambipolar transporting naphtho[2,3-c][1,2,5]thiadiazole derivative with both high electron and hole mobilities has been synthesized via Suzuki cross-coupling. The electron and hole mobilities are 1.7 x 10(-3) cm(2)/ (V.

View Article and Find Full Text PDF