Materials (Basel)
October 2024
In order to solve the loosening problem caused by stress shielding of femoral stem prostheses in clinical practice, an optimization design method of a personalized porous titanium alloy femoral stem is proposed. According to the stress characteristics of the femur, the porous unit cell structures (TO-C, TO-T, TO-B) under three different loads of compression, torsion, and bending were designed by topology optimization. The mechanical properties and permeability of different structures were studied.
View Article and Find Full Text PDFAnalyses of long non-coding RNA (lncRNA)-protein interactions provide key clues for understanding the molecular basis of lncRNA-modulated biological processes. Here, we detail a yeast three-hybrid assay to identify the lncRNA-interacting protein. We describe steps for lncRNA bait preparation, screening an RNA-binding proteins (RBPs) cDNA library, and validation of the lncRNA-RBP interaction.
View Article and Find Full Text PDFAlthough many long noncoding RNAs have been discovered in plants, little is known about their biological function and mode of action. Here we show that the drought-induced long intergenic noncoding RNA DANA1 interacts with the L1p/L10e family member protein DANA1-INTERACTING PROTEIN 1 (DIP1) in the cell nucleus of Arabidopsis, and both DANA1 and DIP1 promote plant drought resistance. DANA1 and DIP1 increase histone deacetylase HDA9 binding to the CYP707A1 and CYP707A2 loci.
View Article and Find Full Text PDFThe fast and efficient removal of Cs ions from water is of great significance for the further treatment and disposal of highly active nuclear waste. Hitherto, although many layered metal sulfides have been proven to be very effective in capturing aqueous cesium, three-dimensional (3D) microporous examples have rarely been explored, especially compounds that are systematically used to study cesium ion exchange behaviors. In this paper, we present detailed Cs ion exchange properties of a 3D, microporous, zeolitic-like sulfide, namely K@GaSnS-1, in different conditions.
View Article and Find Full Text PDFThe elastic modulus of traditional solid titanium alloy tibial implants is much higher than that of human bones, which can cause stress shielding. Designing them as a porous structure to form a bone-like trabecular structure effectively reduces stress shielding. However, the actual loading conditions of bones in different parts of the human body have not been considered for some trabecular structures, and their mechanical properties have not been considered concerning the personalized differences of other patients.
View Article and Find Full Text PDFMaterials (Basel)
September 2022
The acetabular cups used in total hip arthroplasty are mostly made of dense metal materials with an elastic moduli much higher than that of human bone. This leads to stress shielding after implantation, which may cause aseptic loosening of the implant. Selective laser melting (SLM) technology allows us to produce tiny and complex porous structures and to reduce the elastic moduli of dense metals, thereby avoiding stress shielding.
View Article and Find Full Text PDFIn the performance optimization of the additive manufacturing of Ti6Al4V components, conventional control methods have difficulty taking into account the requirements of quality and mechanical properties of components, resulting in insufficient mechanical properties and a small control range. Therefore, combining the advantages of porous structure and alloy composition control, this paper proposed a structure-composition composite control method for selective laser-fused titanium alloy components by coupling the effects of porous structure parameters and boron content on the properties of Ti6Al4V components. Based on the Gibson-Ashby formula, the compression test of porous Ti6Al4V alloy and the tensile test of boron-containing Ti6Al4V alloy were carried out by SLM forming technology.
View Article and Find Full Text PDFBackground: Microbial contamination is a vital obstacle needed to overcome for food safety of condiments. Radio frequency (RF) pasteurisation is a new technology to solve this obstacle. Temperature distribution and heating uniformity of sample, which are influenced by different factors, are the most important things affecting the nutritional ingredients and microbial safety of sample in the process of RF pasteurisation.
View Article and Find Full Text PDF