The constant false-alarm rate (CFAR) algorithm is essential for detecting targets during radar signal processing. It has been improved to accurately detect targets, especially in nonhomogeneous environments, such as multitarget or clutter edge environments. For example, there are sort-based and variable index-based algorithms.
View Article and Find Full Text PDFSensors (Basel)
September 2021
This paper presents the design and implementation results of an efficient fast Fourier transform (FFT) processor for frequency-modulated continuous wave (FMCW) radar signal processing. The proposed FFT processor is designed with a memory-based FFT architecture and supports variable lengths from 64 to 4096. Moreover, it is designed with a floating-point operator to prevent the performance degradation of fixed-point operators.
View Article and Find Full Text PDFMost approaches for moving object detection (MOD) based on computer vision are limited to stationary camera environments. In advanced driver assistance systems (ADAS), however, ego-motion is added to image frames owing to the use of a moving camera. This results in mixed motion in the image frames and makes it difficult to classify target objects and background.
View Article and Find Full Text PDFHyperoxaluria is a major risk factor for kidney stones and has no specific therapy, although colonization is associated with reduced stone risk. interacts with colonic epithelium and induces colonic oxalate secretion, thereby reducing urinary oxalate excretion, an unknown secretagogue. The difficulties in sustaining colonization underscore the need to identify the derived factors inducing colonic oxalate secretion.
View Article and Find Full Text PDFBackground: Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western population. Although genetic factors are considered to contribute to CLL etiology, at present genomic aberrations identified in CLL are limited compared with those identified in other types of leukemia, which raises the question of the degree of genetic influence on CLL. We performed a high-resolution genome scanning study to address this issue.
View Article and Find Full Text PDFIn this study, we compared the genomic integration efficiencies and transposition site preferences of Sleeping Beauty (SB or SB11), Tol2, and piggyBac (PB) transposon systems in primary T cells derived from peripheral blood lymphocytes (PBL) and umbilical cord blood (UCB). We found that PB demonstrated the highest efficiency of stable gene transfer in PBL-derived T cells, whereas SB11 and Tol2 mediated intermediate and lowest efficiencies, respectively. Southern hybridization analysis demonstrated that PB generated the highest number of integrants when compared to SB and Tol2 in both PBL and UCB T cells.
View Article and Find Full Text PDFWe have demonstrated the self-assembled DNA nanoparticles capable of controlled disassembly in response to a single nucleotide change (SNC) in a target nucleic acid. The DNA nanoparticles (avg diameter=51+/-22 nm) were constructed by joining two types of streptavidin-DNA conjugates with 2 molar equiv of a linker strand that carries complementary sequences to both conjugates. Nanoparticle disassembly triggered by a target strand (i.
View Article and Find Full Text PDFDitag genome scanning (DGS) uses next-generation DNA sequencing to sequence the ends of ditag fragments produced by restriction enzymes. These sequences are compared to known genome sequences to determine their structure. In order to use DGS for large-scale genome structural studies, we have substantially revised the original protocol by replacing the in vivo genomic DNA cloning with in vitro adaptor ligation, eliminating the ditag concatemerization steps, and replacing the 454 sequencer with Solexa or SOLiD sequencers for ditag sequence collection.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2009
Studying gene expression at different hematopoietic stages provides insights for understanding the genetic basis of hematopoiesis. We analyzed gene expression in human CD34(+) hematopoietic cells that represent the stem-progenitor population (CD34(+) cells). We collected >459,000 transcript signatures from CD34(+) cells, including the de novo-generated 3' ESTs and the existing sequences of full-length cDNAs, ESTs, and serial analysis of gene expression (SAGE) tags, and performed an extensive annotation on this large set of CD34(+) transcript sequences.
View Article and Find Full Text PDFNormal genome variation and pathogenic genome alteration frequently affect small regions in the genome. Identifying those genomic changes remains a technical challenge. We report here the development of the DGS (Ditag Genome Scanning) technique for high-resolution analysis of genome structure.
View Article and Find Full Text PDFBackground: A large number of natural antisense transcripts have been identified in human and mouse genomes. Study of their potential functions clearly requires cost-efficient method for expression analysis.
Results: Here we show that Affymetrix Exon arrays, which were designed to detect conventional transcripts in the sense orientation, can be used to monitor antisense expression across all exonic loci in mammalian genomes.
J Nanosci Nanotechnol
November 2006
Metal organic chemical vapour deposition (MOCVD) has been investigated for growth of Bi2Te3 and Sb2Te3 films on (001) GaAs substrates using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. The surface morphologies of Bi2Te3 and Sb2Te3 films were strongly dependent on the deposition temperatures as it varies from a step-flow growth mode to island coalescence structures depending on deposition temperature. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor ratio of VI/V and deposition temperature.
View Article and Find Full Text PDFThe SAGE (serial analysis of gene expression) method is sensitive at detecting the lower abundance transcripts. More than a third of human SAGE tags identified are novel representing the low abundance unknown transcripts. Using the GLGI method (generation of longer 3' EST from SAGE tag for gene identification), we converted 1009 low-copy, human X chromosome-specific SAGE tags into 10210 3' ESTs.
View Article and Find Full Text PDFBioinformatics
October 2006
Motivation: Taking advantage of the high sensitivity and specificity of LongSAGE tag for transcript detection and genome mapping, we analyzed the 632 813 unique human LongSAGE tags deposited in public databases to identify novel human antisense transcripts.
Results: Our study identified 45 321 tags that match the antisense strand of 9804 known mRNA sequences, 6606 of which contain antisense ESTs and 3198 are mapped only by SAGE tags. Quantitative analysis showed that the detected antisense transcripts are present at levels lower than their counterpart sense transcripts.
SAGE (serial analysis of gene expression) detects transcripts by extracting short tags from the transcripts. Because of the limited length, many SAGE tags are shared by transcripts from different genes. Relying on sequence information in the general gene expression database has limited power to solve this problem due to the highly heterogeneous nature of the deposited sequences.
View Article and Find Full Text PDFThe virA and virG two-component regulatory system is essential for transcriptional activation of virulence (vir) genes in Agrobacterium tumefaciens in the presence of inducer molecules. The VirA/VirG mediated vir gene transcription depends on a specific interaction between the C-terminal domain of the alpha subunit (RpoA) of A. tumefaciens RNA polymerase (RNAP) and N-terminal domain of the VirG.
View Article and Find Full Text PDF