Publications by authors named "Yongchao Yao"

Natural enzymes are crucial in biological systems and widely used in biomedicine, but their disadvantages, such as insufficient stability and high cost, have limited their widespread application. Since discovering the enzyme-like activity of FeO nanoparticles, extensive research progress in diverse nanozymes has been made with their in-depth investigation, resulting in rapid development of related nanotechnologies. Nanozymes can compensate for the defects of natural enzymes and show higher stability with lower costs.

View Article and Find Full Text PDF

Hydrogen is an essential energy resource, playing a pivotal role in advancing a sustainable future. Electrolysis of seawater shows great potential for large-scale hydrogen production but encounters challenges such as electrode corrosion caused by chlorine evolution. Herein, a durable CoCO/CoFe layered double hydroxide (LDH) electrocatalyst is presented for alkaline seawater oxidation, showcasing resistance to corrosion and stable operation exceeding 1,000 h at a high current density of 1 A cm.

View Article and Find Full Text PDF

Nebulized inhalation administration refers to the dispersion of drugs into small droplets suspended in the gas through a nebulized device, which are deposited in the respiratory tract by inhalation, to achieve the local therapeutic effect of the respiratory tract. Compared with other drug delivery methods, nebulized inhalation has the advantages of fast effect, high local drug concentration, less dosage, convenient application and less systemic adverse reactions, and has become one of the main drug delivery methods for the treatment of respiratory diseases. In this review, we first discuss the characteristics of nebulized inhalation, including its principles and influencing factors.

View Article and Find Full Text PDF

Monitoring acetylcholinesterase (AChE) activity and its inhibitor is crucial yet challenging for the early diagnosis and treatment of neurological diseases. In this study, we present Au nanoparticle decorated CoAl layered double hydroxide monolayer (Au@CoAl-LDH-m) as a peroxidase-like (POD) nanozyme for the sensitive colorimetric detection of AChE and its inhibitor, thiamine pyrophosphate (TPP). Remarkably, the Au@CoAl-LDH-m nanozyme can catalyze the oxidation of chromogenic substrates through its POD-like activity, which is effectively inhibited by thiocholine (TCh, a catalytic product of AChE), thereby enabling detection of AChE and TPP through a visible colorimetric readout.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) brings new hope for the treatment of breast cancer due to few side effects and highly effective cell killing; however, the low bioavailability of traditional photosensitizers (PSs) and their dependence on oxygen severely limits their application. Aggregation-induced emission (AIE) PSs can dramatically facilitate the photosensitization effect, which can have positive impacts on tumor PDT. To-date, most AIE PSs lack tumor targeting capability and possess poor cell delivery, resulting in their use in large quantities that are harmful to healthy tissues.

View Article and Find Full Text PDF

Sodium-storage performance of pyrite FeS is greatly improved by constructing various FeS-based nanostructures to optimize its ion-transport kinetics and structural stability. However, less attention has been paid to rapid capacity degradation and electrode failure caused by the irreversible phase-transition of intermediate NaFeS to FeS and polysulfides dissolution upon cycling. Under the guidance of theoretical calculations, coupling FeS nanoparticles with honeycomb-like nitrogen-doped carbon (NC) nanosheet supported single-atom manganese (SAs Mn) catalyst (FeS/SAs Mn@NC) via atomic-interface engineering is proposed to address above challenge.

View Article and Find Full Text PDF
Article Synopsis
  • * This study improves nanozyme performance by integrating Ru atoms into a VSnC MAX phase, resulting in V(SnRu)C, which exhibits a remarkable peroxidase-like activity, exceeding that of horseradish peroxidase.
  • * The findings also highlight the successful use of V(SnRu)C in a heart failure biomarker test and its broad antibacterial properties, paving the way for better-designed nanozymes in scientific applications.
View Article and Find Full Text PDF
Article Synopsis
  • Accurate tumor diagnosis is critical for effective treatment, and microRNAs (miRNAs) serve as important biomarkers in this process.
  • The study introduces a colorimetric assay using ruthenium nanoparticle decorated titanium dioxide nanoribbons that allows for the on-site visualization of tumor-associated miRNAs.
  • This method is highly sensitive and specific, capable of detecting miRNAs in diluted human serum with a limit of 100 picomolar, making it a promising tool for early cancer diagnosis and research.
View Article and Find Full Text PDF
Article Synopsis
  • There is a growing need for effective and affordable cancer screening methods due to millions of new cases and deaths each year.
  • Circulating tumor cells (CTCs), which come from tumors and enter the bloodstream, are emerging as valuable biomarkers for non-invasive liquid biopsies, backed by significant research.
  • This review discusses how to detect CTCs using electrochemical cytosensors, covering sample preparation, the types of bio-recognition elements for CTC capture, design strategies for the sensors, and the challenges and future potential of this technology.
View Article and Find Full Text PDF

Cancer is a significant global health challenge, and while chemotherapy remains a widely used treatment, its non-specific toxicity and broad distribution can lead to systemic side effects and limit its effectiveness against tumors. Therefore, the development of safer chemotherapy alternatives is crucial. Prodrugs hold great promise, as they remain inactive until they reach the cancer site, where they are selectively activated by enzymes or specific factors, thereby reducing side effects and improving targeting.

View Article and Find Full Text PDF

The versatile element composition and multifunctional properties of biodegradable silicates have attracted significant attention in cancer therapeutics. However, their application as nanozymes is often limited by suboptimal catalytic efficiency and insufficient intratumoral retention. In this study, the hydrothermal synthesis of iron silicate (FeSi) nanosheets are reported exhibiting exceptional peroxidase (POD)-like activity (136.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) employs reactive oxygen species (ROS) from a photosensitizer (PS) under light, inhibiting multi-drug resistance in bacteria. However, hypoxic conditions in infection sites and biofilms challenge PDT efficiency. We developed fluorinated small molecular micelles (PF-CBMs) as PS carriers to address this, relieving hypoxia and enhancing PS penetration into biofilms.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a noninvasive therapeutic approach that is effective in killing primary tumors with minimal surgical trauma, but its usage in metastatic lesions of melanoma is restricted by spatial limitations. Recently, stimulator of interferon genes (STING) agoinst-mediated innate immunity can activate the STING pathway and further promote dendritic cell (DC) maturation, tumor-specific cytotoxic T lymphocyte, and natural killer cell infiltration and has emerged as a promising approach for cancer therapy. Herein, the authors intriduce facile nanoparticles named HTCS, which can co-deliver STING agonist (2'3'-cGAMP) and a mitochondrial targeting modified photosensitizer (TPP-PEI-Ce6).

View Article and Find Full Text PDF
Article Synopsis
  • - In the field of life sciences and biomedicine, there's a growing need for techniques that can detect low-abundance biomolecules and weak biosignals, leading to advancements in analytical methods that enhance sensitivity and specificity.
  • - Immuno-rolling circle amplification (immuno-RCA) is a significant innovation that combines immunoassays with signal amplification, allowing for the detection of targeted biomolecules at even the single-molecule level through exponential signal enhancement.
  • - This review discusses the practical applications of immuno-RCA in detecting biomarkers, highlights its limitations, and explores future possibilities in areas like diagnostics, biomarker discovery, and molecular imaging.
View Article and Find Full Text PDF

The exploration of noble metal-free nanoarrays as high-activity catalytic electrodes for glucose biosensing holds great significance. Herein, we propose a Ni nanoparticle-decorated TiO nanoribbon array on a titanium plate (Ni@TiO/TP) as an effective non-enzymatic glucose biosensing electrode. The as-prepared Ni@TiO/TP electrode demonstrates rapid glucose response, a wide linear response range (1 μM to 1 mM), a low detection limit (0.

View Article and Find Full Text PDF

The ion-sensitive field effect transistor (ISFET) has emerged as a crucial sensor device, owing to its numerous benefits such as label-free operation, miniaturization, high sensitivity, and rapid response time. Currently, ISFET technology excels in detecting ions, nucleic acids, proteins, and cellular components, with widespread applications in early disease screening, condition monitoring, and drug analysis. Recent advancements in sensing techniques, coupled with breakthroughs in nanomaterials and microelectronics, have significantly improved sensor performance.

View Article and Find Full Text PDF

It is vital to explore effective ways for prolonging electrode lifespans under harsh electrolysis conditions, such as high current densities, acid environment, and impure water source. Here we report alternating electrolysis approaches that realize promptly and regularly repair/maintenance and concurrent bubble evolution. Electrode lifespans are improved by co-action of Fe group elemental ions and alkali metal cations, especially a unique Co-Na combo.

View Article and Find Full Text PDF

Seawater electroreduction is attractive for future H production and intermittent energy storage, which has been hindered by aggressive Mg/Ca precipitation at cathodes and consequent poor stability. Here we present a vital microscopic bubble/precipitate traffic system (MBPTS) by constructing honeycomb-type 3D cathodes for robust anti-precipitation seawater reduction (SR), which massively/uniformly release small-sized H bubbles to almost every corner of the cathode to repel Mg/Ca precipitates without a break. Noticeably, the optimal cathode with built-in MBPTS not only enables state-of-the-art alkaline SR performance (1000-h stable operation at -1 A cm) but also is highly specialized in catalytically splitting natural seawater into H with the greatest anti-precipitation ability.

View Article and Find Full Text PDF

Renewable electricity-powered nitrate/carbon dioxide co-reduction reaction toward urea production paves an attractive alternative to industrial urea processes and offers a clean on-site approach to closing the global nitrogen cycle. However, its large-scale implantation is severely impeded by challenging C-N coupling and requires electrocatalysts with high activity/selectivity. Here, cobalt-nanoparticles anchored on carbon nanosheet (Co NPs@C) are proposed as a catalyst electrode to boost yield and Faradaic efficiency (FE) toward urea electrosynthesis with enhanced C-N coupling.

View Article and Find Full Text PDF

The emergence of multidrug-resistant bacteria along with their resilient biofilms necessitates the development of creative antimicrobial remedies. We designed versatile fluorinated polymer micelles with surface-charge-switchable properties, demonstrating enhanced efficacy against Methicillin-Resistant Staphylococcus Aureus (MRSA) in planktonic and biofilm states. Polymethacrylate diblock copolymers with pendant fluorocarbon chains and carboxyl betaine groups were prepared using reversible addition-fragmentation chain transfer polymerization.

View Article and Find Full Text PDF

Developing an accurate, cost-effective, reliable, and stable glucose detection sensor for the food industry poses a significant yet challenging endeavor. Herein, we present a silver nanoparticle-decorated titanium dioxide nanoribbon array on titanium plate (Ag@TiO/TP) as an efficient electrode for non-enzymatic glucose detection in alkaline environments. Electrochemical evaluations of the Ag@TiO/TP electrode reveal a broad linear response range (0.

View Article and Find Full Text PDF

Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H). However, the system of seawater-to-H faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO layer on Ni foam (NiP@NiMoO/NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater.

View Article and Find Full Text PDF

Seawater electrolysis is gaining recognition as a promising method for hydrogen production. However, severe anode corrosion caused by the high concentration of chloride ions (Cl) poses a challenge for the long-term oxygen evolution reaction. Herein, an anti-corrosion strategy of oxalate anions intercalation in NiFe layered double hydroxide on nickel foam (NiFe-CO LDH/NF) is proposed.

View Article and Find Full Text PDF
Article Synopsis
  • * The presence of chlorine in seawater can corrode catalysts used in the electrolysis process, impacting their durability.
  • * Incorporating tungstate (WO) into NiFe layered double hydroxides (LDH) enhances the efficiency and stability of oxygen generation, achieving nearly perfect efficiency and minimal chlorine byproducts during prolonged tests.
View Article and Find Full Text PDF

Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na-reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes.

View Article and Find Full Text PDF