Plant diseases pose significant threats to agriculture, impacting both food safety and public health. Traditional plant disease detection systems are typically limited to recognizing disease categories included in the training dataset, rendering them ineffective against new disease types. Although out-of-distribution (OOD) detection methods have been proposed to address this issue, the impact of fine-tuning paradigms on these methods has been overlooked.
View Article and Find Full Text PDFAccurate identification of individual cattle is of paramount importance in precision livestock farming, enabling the monitoring of cattle behavior, disease prevention, and enhanced animal welfare. Unlike human faces, the faces of most Hanwoo cattle, a native breed of Korea, exhibit significant similarities and have the same body color, posing a substantial challenge in accurately distinguishing between individual cattle. In this study, we sought to extend the closed-set scope (only including identifying known individuals) to a more-adaptable open-set recognition scenario (identifying both known and unknown individuals) termed Cattle's Face Open-Set Recognition (CFOSR).
View Article and Find Full Text PDFPlant disease detection has made significant strides thanks to the emergence of deep learning. However, existing methods have been limited to closed-set and static learning settings, where models are trained using a specific dataset. This confinement restricts the model's adaptability when encountering samples from unseen disease categories.
View Article and Find Full Text PDFRecent developments in deep learning-based automatic weeding systems have shown promise for unmanned weed eradication. However, accurately distinguishing between crops and weeds in varying field conditions remains a challenge for these systems, as performance deteriorates when applied to new or different fields due to insignificant changes in low-level statistics and a significant gap between training and test data distributions. In this study, we propose an approach based on unsupervised domain adaptation to improve crop-weed recognition in new, unseen fields.
View Article and Find Full Text PDFFront Plant Sci
November 2022
Deep learning has witnessed a significant improvement in recent years to recognize plant diseases by observing their corresponding images. To have a decent performance, current deep learning models tend to require a large-scale dataset. However, collecting a dataset is expensive and time-consuming.
View Article and Find Full Text PDFPredicting plant growth is a fundamental challenge that can be employed to analyze plants and further make decisions to have healthy plants with high yields. Deep learning has recently been showing its potential to address this challenge in recent years, however, there are still two issues. First, image-based plant growth prediction is currently taken either from time series or image generation viewpoints, resulting in a flexible learning framework and clear predictions, respectively.
View Article and Find Full Text PDFIn this paper, we examine the robust beamforming design to tackle the energy efficiency (EE) maximization problem in a 5G massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) downlink system with imperfect channel state information (CSI) at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA) algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.
View Article and Find Full Text PDF