Titanium matrix composites (TMCs) have garnered substantial attention from researchers owing to their outstanding properties. Nonetheless, the strength and ductility of TMCs hardly co-exist and often show a trade-off between each other. In this study, we employ an ultra-thin graphite powder sheet as the carbon source and employ Ti/C composites with varying carbon contents, prepared via a layer-stacked laminated sintering method, to ensure a comprehensive in-situ reaction and uniform reinforcement distribution.
View Article and Find Full Text PDFTitanium matrix composites (TMCs) with TiC reinforcements were fabricated by an in-situ method that evolves pure titanium foils (thick: 100 μm) and graphite powder sheets by spark plasma sintering. 20 μm thick graphite powder sheets with PVA (polyvinyl alcohol) were fabricated as carbon resources. The effects of different sintering temperatures and heating time on microstructural features, interface, and properties of the composites were investigated.
View Article and Find Full Text PDFThe conventional manufacturing process of fiber-reinforced metal matrix composites via liquid infiltration processes, preform manufacturing using inorganic binders is essential. However, the procedure involves binder sintering, which requires high energy and long operating times. A new fabrication process without preform manufacturing is proposed to fabricate short carbon fiber (SCF)-reinforced aluminum matrix composites using a low-pressure infiltration method.
View Article and Find Full Text PDFPolyvinyl alcohol (PVA)-based carbon nanofiber (CNF) sheets are fabricated as an innovative thermal interface material (TIM), which is a potential substitute for traditional TIMs. Five types of PVA-based CNF sheets were fabricated at different mass ratios of PVA:vapor-grown carbon fiber (VGCF) (1:0.100, 1:0.
View Article and Find Full Text PDF