China's rail transit system is developing rapidly, but achieving seamless high-precision localization of trains throughout the entire route in closed environments such as tunnels and culverts still faces significant challenges. Traditional localization technologies cannot meet current demands, and the present paper proposes an autonomous localization method for trains based on pulse observation in a tunnel environment. First, the Letts criterion is used to eliminate abnormal gyro data, the CEEMDAN method is employed for signal decomposition, and the decomposed signals are classified using the continuous mean square error and norm method.
View Article and Find Full Text PDF