ACS Appl Mater Interfaces
August 2022
We developed hybrid nanospheres comprised of two of the most important biomolecules in nature, DNA and proteins, which have excellent biocompatibility, high drug payload capacity, imaging ability, and / cancer targeting capability. The synthesis can be done in a facile one-pot assembly system that includes three steps: step-growth polymerization of two DNA oligomers, addition of streptavidin to assemble spherical hybrid nanostructures, and functionalization of hybrid nanospheres with biotinylated aptamers. To test the feasibility of cancer targeting and drug-loading capacity of the hybrid nanospheres, MUC1-specific aptamers (MA3) were conjugated to nanosphere surfaces (apt-nanospheres), and doxorubicin (Dox) was loaded into nanospheres by DNA intercalation.
View Article and Find Full Text PDFHere, we report genetically encoded AviTag conjugating system for Channelrhodopsin-2(ChR2) in order to attach various nanostructures to the membrane protein in a cell type specific manner. First, AviTag peptide sequence is cloned to N-terminal site of ChR2 construct and expressed at the membrane of primary-cultured hippocampal neurons via lentiviral transduction. Second, with the help of BirA enzyme and ATP, biotin coated quantum dots (Qdots) and streptavidin (SAv) coated Qdots are successfully bound to AviTag sites at the membrane where ChR2 is located and confirmed by fluorescence imaging.
View Article and Find Full Text PDFHere, we explore the extended utility of two important functional biomolecules, DNA and protein, by hybridizing them through avidin-biotin conjugation. We report a simple yet scalable technique of successive magnetic separations to synthesize traptavidin-DNA conjugates with four distinct DNA binding sites that can be used as a supramolecular building block for programmable assembly of nanostructures. Using this nanoassembly platform, we fabricate several different plasmonic nanostructures with various metallic as well as semiconductor nanoparticles in predetermined ways.
View Article and Find Full Text PDFPolyethyleneimine (PEI) has been described as a highly efficient gene carrier due to its efficient proton sponge effect within endosomes. However, many studies have demonstrated that PEI is toxic and associated with a lack of cell specificity despite high transfection efficiency. In order to minimize the toxicity of PEI, we prepared chitosan-graft-spermine (CHI-g-SPE) in a previous study.
View Article and Find Full Text PDFNon-viral gene delivery systems based on polyethyleneimine (PEI) are efficient due to their proton-sponge effect within endosomes, but they have poor physical characteristics such as slow dissociation, cytotoxicity, and non targeted gene delivery. To overcome many of the problems associated with PEI, we synthesized a galactosylated poly(ethylene glycol)-chitosan-graft-spermine (GPCS) copolymer with low cytotoxicity and optimal gene delivery to hepatocytes using an amide bond between galactosylated poly(ethylene glycol) and chitosan-graft-spermine. The GPCS copolymer formed complexes with plasmid DNA, and the GPCS/DNA complexes had well-formed spherical shapes.
View Article and Find Full Text PDF