Publications by authors named "YongQing Fu"

The current key issues in applying acoustofluidics in engineering lie in the inflexibility of manufacturing processes, particularly those involving modifications to piezoelectric materials and devices. This leads to inefficient prototyping and potentially high costs. To overcome these limitations, we proposed a technique that is capable of prototyping acoustofluidic devices in a straightforward manner.

View Article and Find Full Text PDF

In this study, we introduced an integrated approach using piezoelectric thin film-based surface acoustic wave (SAW) and wireless power transfer (WPT) technologies, designed for both passive monitoring and active defogging/icing functions. We systematically investigated the resonant frequency shifts of ZnO/glass SAW devices, establishing their correlations with variations in humidity and temperature under cold conditions. Acoustic waves generated through the ZnO/glass SAW device were used for defogging and deicing functions with effects of RF powers and acousto-heating thoroughly evaluated.

View Article and Find Full Text PDF

Dimethyl methylphosphonate (DMMP) is commonly used as an alternative for demonstrating to detect sarin, which is one of the most toxic but odorless chemical nerve agents. Among various types of DMMP sensors, those utilizing surface acoustic wave (SAW) technology provide notable advantages such as wireless/passive monitoring, digital output, and a compact, portable design. However, key challenges for SAW-based DMMP sensors operated at room temperature lies in simultaneous enhancement of sensitivities and reduction of detection limits.

View Article and Find Full Text PDF

Love-mode surface acoustic wave (SAW) sensors show great promise for biodetection applications owing to their low cost, digital output, and wireless passive capability, but their performance is often restricted by the availability of suitable sensitive membrane layers. Herein, a composite layer of electrospun fibers made from cellulose acetate and polyethylenimine, coated with gold nanoparticles, is proposed as a porous and sensitive membrane coated onto a love-mode SAW biosensor for monitoring gene sequences of . The results showed that the developed sensor exhibited an impressive sensitivity of 122.

View Article and Find Full Text PDF

Near-infrared (NIR) spectroscopy has been widely utilized to predict multi-constituents of corn in agriculture. However, directly extracting constituent information from the NIR spectra is challenging due to many issues such as broad absorption band, overlapping and non-specific nature. To solve these problems and extract implicit features from the raw data of NIR spectra to improve performance of quantitative models, a one-dimensional shallow convolutional neural network (CNN) model based on an eXtreme Gradient Boosting (XGBoost) feature extraction method was proposed in this paper.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is an important component of extracellular matrices (ECM) and a linear polysaccharide involved in various physiological and pathological processes within the biological system. Several pathogens exploit HA degradation within the extracellular matrix to facilitate infection. While many intestinal microorganisms play significant roles in HA utilization in the human body, there remains a scarcity of related studies.

View Article and Find Full Text PDF

Excitation of multiple acoustic wave modes on a single chip is beneficial to implement diversified acoustofluidic functions. Conventional acoustic wave devices made of bulk LiNbO substrates generally generate few acoustic wave modes once the crystal-cut and electrode pattern are defined, limiting the realization of acoustofluidic diversity. In this paper, we demonstrated diversity of acoustofluidic behaviors using multiple modes of acoustic waves generated on piezoelectric-thin-film-coated aluminum sheets.

View Article and Find Full Text PDF

Formation of bacterial films on structural surfaces often leads to severe contamination of medical devices, hospital equipment, implant materials, , and antimicrobial resistance of microorganisms has indeed become a global health issue. Therefore, effective therapies for controlling infectious and pathogenic bacteria are urgently needed. Being a promising active method for this purpose, surface acoustic waves (SAWs) have merits such as nanoscale earthquake-like vibration/agitation/radiation, acoustic streaming induced circulations, and localised acoustic heating effect in liquids.

View Article and Find Full Text PDF

Cytopathology, crucial in disease diagnosis, commonly uses microscopic slides to scrutinize cellular abnormalities. However, processing high volumes of samples often results in numerous negative diagnoses, consuming significant time and resources in healthcare. To address this challenge, a surface acoustic wave-enhanced multi-view acoustofluidic rotation cytometry (MARC) technique is developed for pre-cytopathological screening.

View Article and Find Full Text PDF

Transdermal drug delivery provides therapeutic benefits over enteric or injection delivery because its transdermal routes provide more consistent concentrations of drug and avoid issues of drugs affecting kidneys and liver functions. Many technologies have been evaluated to enhance drug delivery through the relatively impervious epidermal layer of the skin. However, precise delivery of large hydrophilic molecules is still a great challenge even though microneedles or other energized (such as electrical, thermal, or ultrasonic) patches have been used, which are often difficult to be integrated into small wearable devices.

View Article and Find Full Text PDF

To improve prediction performance and reduce artifacts in Raman spectra, we developed an eXtreme Gradient Boosting (XGBoost) preprocessing method to preprocess the Raman spectra of glucose, glycerol and ethanol mixtures. To ensure the robustness and reliability of the XGBoost preprocessing method, an X-LR model (which combined XGBoost preprocessing and a linear regression (LR) model) and a X-MLP model (which combined XGBoost preprocessing and a multilayer perceptron (MLP) model) were developed. These two models were used to quantitatively analyze the concentrations of glucose, glycerol and ethanol in the Raman spectra of mixed solutions.

View Article and Find Full Text PDF

Flexible surface acoustic wave technology has garnered significant attention for wearable electronics and sensing applications. However, the mechanical strains induced by random deformation of these flexible SAWs during sensing often significantly alter the specific sensing signals, causing critical issues such as inconsistency of the sensing results on a curved/flexible surface. To address this challenge, we first developed high-performance AlScN piezoelectric film-based flexible SAW sensors, investigated their response characteristics both theoretically and experimentally under various bending strains and UV illumination conditions, and achieved a high UV sensitivity of 1.

View Article and Find Full Text PDF

Photoacoustic spectroscopy (PAS) has been rapidly developed and applied to different detection scenarios. The acoustic pressure detection is an important part in the PAS system. In this paper, an ultrahigh sensitivity Fabry-Perot acoustic sensor with a T-shaped cantilever was proposed.

View Article and Find Full Text PDF

Multidrug resistance (MDR) during clinical chemotherapy for cancer has been considered a major obstacle to treatment efficacy. The involvement of adenosine triphosphate-binding cassette (ABC) transporters in the MDR mechanism significantly reduces the efficacy of chemotherapeutics. This study investigates the potential of morin, a dietary bioflavonoid, to overcome colchicine resistance in KBChR-8-5 MDR cells.

View Article and Find Full Text PDF

Precise control of microparticle movement is crucial in high throughput processing for various applications in scalable manufacturing, such as particle monolayer assembly and 3D bio-printing. Current techniques using acoustic, electrical and optical methods offer precise manipulation advantages, but their scalability is restricted due to issues such as, high input powers and complex fabrication and operation processes. In this work, we introduce the concept of capillary wave tweezers, where mm-scale capillary wave fields are dynamically manipulated to control the position of microparticles in a liquid volume.

View Article and Find Full Text PDF

Nanomechanical measurements, especially the detection of weak contact forces, play a vital role in many fields, such as material science, micromanipulation, and mechanobiology. However, it remains a challenging task to realize the measurement of ultraweak force levels as low as nanonewtons with a simple sensing configuration. In this work, an ultrasensitive all-fiber nanonewton force sensor structure based on a single-mode-tapered U-shape multimode-single-mode fiber probe is proposed and experimentally demonstrated with a limit of detection of ~5.

View Article and Find Full Text PDF

Surface acoustic wave (SAW) technology has been widely used to manipulate microparticles and biological species, based on acoustic radiation force (ARF) and drag force induced by acoustic streaming, either by standing SAWs (SSAWs) or travelling SAWs (TSAWs). These acoustofluidic patterning functions can be achieved within a polymer chamber or a glass capillary with various cross-sections positioned along the wave propagating paths. In this paper, we demonstrated that microparticles can be aligned, patterned, and concentrated within both circular and rectangular glass capillaries using TSAWs based on a piezoelectric thin film acoustic wave platform.

View Article and Find Full Text PDF

Raman spectroscopy has gained popularity in analyzing blood glucose levels due to its non-invasive identification and minimal interference from water. However, the challenge lies in how to accurately predict blood glucose concentrations in human blood using Raman spectroscopy. This paper researches a novel integrated machine learning algorithm called Bagging-ABC-ELM.

View Article and Find Full Text PDF

Humidity sensing and water molecule monitoring have become hot research topics attributed to their potential applications in monitoring breathing/physiological conditions of humans, air conditioning in greenhouses, and soil moisture in agriculture. However, there is a huge challenge for highly sensitive and precision humidity detection with wireless and fast responsive capabilities. In this work, a hybrid/synergistic strategy was proposed using a LiNbO/SiO/SiC heterostructure to generate shear-horizontal (SH) surface acoustic waves (SAWs) and using a nanocomposite of polyethylenimine-silicon dioxide nanoparticles (PEI-SiO NPs) to form a sensitive layer, thus achieving an ultrahigh sensitivity of SAW humidity sensors.

View Article and Find Full Text PDF

Background: Blood-brain barrier (BBB) is a crucial but dynamic structure that functions as a gatekeeper for the central nervous system (CNS). Managing sufficient substances across the BBB is a major challenge, especially in the development of therapeutics for CNS disorders.

Methods: To achieve an efficient, fast and safe strategy for BBB opening, an acoustofluidic transwell (AFT) was developed for reversible disruption of the BBB.

View Article and Find Full Text PDF

Moisture condensation, fogging, and frost or ice formation on structural surfaces cause severe hazards in many industrial components such as aircraft wings, electric power lines, and wind-turbine blades. Surface-acoustic-wave (SAW) technology, which is based on generating and monitoring acoustic waves propagating along structural surfaces, is one of the most promising techniques for monitoring, predicting, and also eliminating these hazards occurring on these surfaces in a cold environment. Monitoring condensation and frost/ice formation using SAW devices is challenging in practical scenarios including sleet, snow, cold rain, strong wind, and low pressure, and such a detection in various ambient conditions can be complex and requires consideration of various key influencing factors.

View Article and Find Full Text PDF

With extensive and widespread uses of miniaturized and intelligent wearable devices, continuously monitoring subtle spatial and temporal changes in human physiological states becomes crucial for daily healthcare and professional medical diagnosis. Wearable acoustical sensors and related monitoring systems can be comfortably applied onto human body with a distinctive function of non-invasive detection. This paper reviews recent advances in wearable acoustical sensors for medical applications.

View Article and Find Full Text PDF

Recently, surface acoustic wave (SAW) based acoustofluidic separation of microparticles and cells has attracted increasing interest due to accuracy and biocompatibility. Precise control of the input power of acoustofluidic devices is essential for generating optimum acoustic radiation force to manipulate microparticles given their various parameters including size, density, compressibility, and moving velocity. In this work, an acoustophoretic system is developed by employing SAW based interdigital electrode devices.

View Article and Find Full Text PDF

Recently, single-atom catalysts (SACs) are receiving significant attention in electrocatalysis fields due to their excellent specific activities and extremely high atomic utilization ratio. Effective loading of metal atoms and high stability of SACs increase the number of exposed active sites, thus significantly improving their catalytic efficiency. Herein, we proposed a series (29 in total) of two-dimensional (2D) conjugated structures of TMBNS (TM means those 3d to 5d transition metals) and studied the performance as single-atom catalysts for nitrogen reduction reaction (NRR) using density functional theory (DFT).

View Article and Find Full Text PDF

Non-precious-metal based electrocatalysts with highly-exposed and well-dispersed active sites are crucially needed to achieve superior electrocatalytic performance for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) toward zinc-air battery (ZAB). Herein, Co-CoO heterostructures derived from nanosized ZIF-67 are densely-exposed and strongly-immobilized onto N-doped porous carbon foam (NPCF) through a self-sacrificial pyrolysis strategy. Benefited from the high exposure of Co-CoO heterostructures and the favorable mass and electron transfer ability of NPCF, the Co-CoO/NPCF electrocatalyst exhibits remarkable performance for both ORR (E  = 0.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm83ievu7hal06d8pchlcavi3q8q59oee): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once