The Middle East respiratory syndrome coronavirus (MERS-CoV), belonging to the family Coronaviridae and genus Betacoronavirus, has been recognized as a highly pathogenic virus. Due to the lack of therapeutic or preventive agents against MERS-CoV, developing an effective vaccine is essential for preventing a viral outbreak. To address this, we developed a recombinant S1 subunit of MERS-CoV spike protein fused with the human IgG4 Fc fragment (LV-MS1-Fc) in Chinese hamster ovary (CHO) cells.
View Article and Find Full Text PDFThe development of a synchronized delivery and imaging system for small interfering RNA (siRNA) is required for the clinical application of RNA interference (RNAi) in cancer treatment. Herein, we report a pH-responsive, magnetic nanoparticle-based siRNA delivery system that can facilitate the safe and efficient delivery and visualization of therapeutic siRNA by high-resolution magnetic resonance (MR) imaging. Cationic poly-l-lysine-graft-imidazole (PLI) with a reactive silane moiety was stably immobilized onto the surface of the assembled manganese ferrite nanoparticles (MFs) through an emulsion process, ensuring high water solubility, enhanced MR contrast effect, and endosome-disrupting functionality.
View Article and Find Full Text PDFCombined cancer treatment via co-delivery of siRNAs and an anticancer drug can be a promising strategy due to the synergistic effect of simultaneously minimizing gene/drug administration. In this study, Bcl-xL siRNA and doxorubicin (DOX) are encapsulated into designed methoxy-poly(ethylene glycol)-block-poly(D,L-lactic acid) (mPEG-b-PLA) block copolymer polymersomes (PSomes). A study of the cytotoxicity of Bcl-xL siRNA and DOX co-encapsulated PSomes (CPSomes) shows more inhibited proliferation of MKN-45 and MKN-28 human gastric cancer cell lines than only gene- and drug-loaded ones.
View Article and Find Full Text PDFWe have developed a nanovector consisting of hyaluronic acid (HA) and poly-L-lysine-graft-imidazole (PLI)-based polyplexes containing Bcl-xL-specific shRNA-encoding plasmid DNA (HA/PLI/pDNA) for CD44 targeted gastric cancer therapy. The prepared ternary polyplexes have a negative surface charge of -24 mV and a size of approximately 100 nm at an N/P ratio of 5 with HA/PLI molar ratio of 0.03.
View Article and Find Full Text PDF